首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mismatch repair (MMR) increases the fidelity of DNA replication by identifying and correcting replication errors. Processivity clamps are vital components of DNA replication and MMR, yet the mechanism and extent to which they participate in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity clamp DnaN, and found that it serves as a platform for mismatch detection and coupling of repair to DNA replication. By visualizing functional MutS fluorescent fusions in vivo, we find that MutS forms foci independent of mismatch detection at sites of replication (i.e. the replisome). These MutS foci are directed to the replisome by DnaN clamp zones that aid mismatch detection by targeting the search to nascent DNA. Following mismatch detection, MutS disengages from the replisome, facilitating repair. We tested the functional importance of DnaN‐mediated mismatch detection for MMR, and found that it accounts for 90% of repair. This high dependence on DnaN can be bypassed by increasing MutS concentration within the cell, indicating a secondary mode of detection in vivo whereby MutS directly finds mismatches without associating with the replisome. Overall, our results provide new insight into the mechanism by which DnaN couples mismatch recognition to DNA replication in living cells.  相似文献   

2.
Bloom's syndrome (BS) is a rare genetic disorder characterised by genome instability and cancer susceptibility. BLM, the BS gene product, belongs to the highly-conserved RecQ family of DNA helicases. Although the exact function of BLM in human cells remains to be defined, it seems likely that BLM eliminates some form of homologous recombination (HR) intermediate that arises during DNA replication. Similarly, the mismatch repair (MMR) system also plays a crucial role in the maintenance of genomic stability, by correcting DNA errors generated during DNA replication. Recent evidence implicates components of the MMR system also in HR repair. We now show that hMSH6, a component of the heterodimeric mismatch recognition complex hMSH2/hMSH6 (hMutS(alpha)), interacts with the BLM protein both in vivo and in vitro. In agreement with these findings, BLM and hMSH6 co-localise to discrete nuclear foci following exposure of the cells to ionising radiation. However, the purified recombinant MutS(alpha) complex does not affect the helicase activity of BLM in vitro. As BLM has previously been shown to interact with the hMLH1 component of the hMLH1/hPMS2 (hMutL(alpha)) heterodimeric MMR complex, our present findings further strengthen the link between BLM and processes involving correction of DNA mismatches, such as in the regulation of the fidelity of homologous recombination events.  相似文献   

3.
Mismatch repair (MMR) is an evolutionarily conserved DNA repair system, which corrects mismatched bases arising during DNA replication. MutS recognizes and binds base pair mismatches, while the MutL protein interacts with MutS-mismatch complex and triggers MutH endonuclease activity at a distal-strand discrimination site on the DNA. The mechanism of communication between these two distal sites on the DNA is not known. We used functional fluorescent MMR proteins, MutS and MutL, in order to investigate the formation of the fluorescent MMR protein complexes on mismatches in real-time in growing Escherichia coli cells. We found that MutS and MutL proteins co-localize on unrepaired mismatches to form fluorescent foci. MutL foci were, on average, 2.7 times more intense than the MutS foci co-localized on individual mismatches. A steric block on the DNA provided by the MutHE56A mutant protein, which binds to but does not cut the DNA at the strand discrimination site, decreased MutL foci fluorescence 3-fold. This indicates that MutL accumulates from the mismatch site toward strand discrimination site along the DNA. Our results corroborate the hypothesis postulating that MutL accumulation assures the coordination of the MMR activities between the mismatch and the strand discrimination site.  相似文献   

4.
We determined the localizations of mismatch repair proteins in living Bacillus subtilis cells. MutS-GFP colocalized with the chromosome in all cells and formed foci in a subset of cells. MutL-GFP formed foci in a subset of cells, and its localization was MutS dependent. The introduction of mismatches by growth in 2-aminopurine caused a replication-dependent increase in the number of cells with MutS and MutL foci. Approximately half of the MutS foci colocalized with DNA polymerase foci. We conclude that MutS is associated with the entire chromosome, poised to detect mismatches. After detection, it appears that mismatch repair foci assemble at mismatches as they emerge from the DNA polymerase and are then carried away from the replisome by continuing replication.  相似文献   

5.
6.
DNA mismatch repair (MMR) models have proposed that MSH (MutS homolog) proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH (MutL homolog) proteins (primarily Mlh1-Pms1 in baker's yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20-30nm) unstructured arms that connect two terminal globular domains. These arms can vary between 100 and 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker's yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR.  相似文献   

7.
Mismatch repair is a highly conserved pathway responsible for correcting DNA polymerase errors incorporated during genome replication. MutL is a mismatch repair protein known to coordinate several steps in repair that ultimately results in strand removal following mismatch identification by MutS. MutL homologs from bacteria to humans contain well-conserved N-terminal and C-terminal domains. To understand the contribution of the MutL N-terminal domain to mismatch repair, we analyzed 14 different missense mutations in Bacillus subtilis MutL that were conserved with missense mutations identified in the human MutL homolog MLH1 from patients with hereditary nonpolyposis colorectal cancer (HNPCC). We characterized missense mutations in or near motifs important for ATP binding, ATPase activity, and DNA binding. We found that 13 of the 14 missense mutations conferred a substantial defect to mismatch repair in vivo, while three mutant alleles showed a dominant negative increase in mutation frequency to wild-type mutL. We performed immunoblot analysis to determine the relative stability of each mutant protein in vivo and found that, although most accumulated, several mutant proteins failed to maintain wild-type levels, suggesting defects in protein stability. The remaining missense mutations located in areas of the protein important for DNA binding, ATP binding, and ATPase activities of MutL compromised repair in vivo. Our results define functional residues in the N-terminal domain of B. subtilis MutL that are critical for mismatch repair in vivo.  相似文献   

8.
Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS-mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand.  相似文献   

9.
Beta clamp directs localization of mismatch repair in Bacillus subtilis   总被引:1,自引:0,他引:1  
MutS homologs function in several cellular pathways including mismatch repair (MMR), the process by which mismatches introduced during DNA replication are corrected. We demonstrate that the C terminus of Bacillus subtilis MutS is necessary for an interaction with beta clamp. This interaction is required for MutS-GFP focus formation in response to mismatches. Reciprocally, we show that a mutant of the beta clamp causes elevated mutation frequencies and is reduced for MutS-GFP focus formation. MutS mutants defective for interaction with beta clamp failed to support the next step of MMR, MutL-GFP focus formation. We conclude that the interaction between MutS and beta is the major molecular interaction facilitating focus formation and that beta clamp aids in the stabilization of MutS at a mismatch in vivo. The striking ability of the MutS C terminus to direct focus formation at replisomes by itself, suggests that it is mismatch recognition that licenses MutS's interaction with beta clamp.  相似文献   

10.
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.  相似文献   

11.
MutS functions in mismatch repair (MMR) to scan DNA for errors, identify a target site and trigger subsequent events in the pathway leading to error removal and DNA re-synthesis. These actions, enabled by the ATPase activity of MutS, are now beginning to be analyzed from the perspective of the protein itself. This study provides the first ensemble transient kinetic data on MutS conformational dynamics as it works with DNA and ATP in MMR. Using a combination of fluorescence probes (on Thermus aquaticus MutS and DNA) and signals (intensity, anisotropy and resonance energy transfer), we have monitored the timing of key conformational changes in MutS that are coupled to mismatch binding and recognition, ATP binding and hydrolysis, as well as sliding clamp formation and signaling of repair. Significant findings include (a) a slow step that follows weak initial interaction between MutS and DNA, in which concerted conformational changes in both macromolecules control mismatch recognition, and (b) rapid, binary switching of MutS conformations that is concerted with ATP binding and hydrolysis and (c) is stalled after mismatch recognition to control formation of the ATP-bound MutS sliding clamp. These rate-limiting pre- and post-mismatch recognition events outline the mechanism of action of MutS on DNA during initiation of MMR.  相似文献   

12.
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα’s surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.  相似文献   

13.
The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to >95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.  相似文献   

14.
Mismatch repair corrects errors that have escaped polymerase proofreading enhancing replication fidelity by at least two orders of magnitude. The β and PCNA sliding clamps increase the polymerase processivity during DNA replication and are important at several stages of mismatch repair. Both MutS and MutL, the two proteins that initiate the mismatch repair response, interact with β. Binding of MutS to β is important to recruit MutS and MutL to foci. Moreover, the endonuclease activity of human and yeast MutLα is stimulated by PCNA. However, the concrete functions of the processivity clamp in the repair steps preceding DNA resynthesis remain obscure. Here, we demonstrate that the C-terminal domain of MutL encompasses a bona fide β-binding motif that mediates a weak, yet specific, interaction between the two proteins. Mutation of this conserved motif correlates with defects in mismatch repair, demonstrating that the direct interaction with β is important for MutL function. The interaction between the C-terminal domain of MutL and β is conserved in both Bacillus subtilis and Escherichia coli, but the repair defects associated with mutation of this β-binding motif are more severe in the former, suggesting that this interaction may have a more prominent role in methyl-independent than methyl-directed mismatch repair systems. Together with previously published data, our work strongly suggests that β may stimulate the endonuclease activity of MutL through its direct interaction with the C-terminal domain of MutL.  相似文献   

15.
The alternating ATPase domains of MutS control DNA mismatch repair   总被引:5,自引:0,他引:5  
DNA mismatch repair is an essential safeguard of genomic integrity by removing base mispairings that may arise from DNA polymerase errors or from homologous recombination between DNA strands. In Escherichia coli, the MutS enzyme recognizes mismatches and initiates repair. MutS has an intrinsic ATPase activity crucial for its function, but which is poorly understood. We show here that within the MutS homodimer, the two chemically identical ATPase sites have different affinities for ADP, and the two sites alternate in ATP hydrolysis. A single residue, Arg697, located at the interface of the two ATPase domains, controls the asymmetry. When mutated, the asymmetry is lost and mismatch repair in vivo is impaired. We propose that asymmetry of the ATPase domains is an essential feature of mismatch repair that controls the timing of the different steps in the repair cascade.  相似文献   

16.
We have characterized the mismatch repair system (MMR) of the highly radiation-resistant type strain of Deinococcus radiodurans, ATCC 13939. We show that the MMR system is functional in this organism, where it participates in ensuring the fidelity of DNA replication and recombination. The system relies on the activity of two key proteins, MutS1 and MutL, which constitute a conserved core involved in mismatch recognition. Inactivation of MutS1 or MutL resulted in a seven-fold increase in the frequency of spontaneous RifR mutagenesis and a ten-fold increase in the efficiency of integration of a donor point-mutation marker during bacterial transformation. Inactivation of the mismatch repair-associated UvrD helicase increased the level of spontaneous mutagenesis, but had no effect on marker integration—suggesting that binding of MutS1 and MutL proteins to a mismatched heteroduplex suffices to inhibit recombination between non identical (homeologous) DNAs. In contrast, inactivation of MutS2, encoded by the second mutS -related gene present in D. radiodurans, had no effect on mutagenesis or recombination. Cells devoid of MutS1 or MutL proteins were as resistant to -rays, mitomycin C and UV-irradiation as wild-type bacteria, suggesting that the mismatch repair system is not essential for the reconstitution of a functional genome after DNA damage.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Baldacci  相似文献   

17.
DNA mismatch repair proteins (MMR) maintain genetic stability by recognizing and repairing mismatched bases and insertion/deletion loops mistakenly incorporated during DNA replication, and initiate cellular response to certain types of DNA damage. Loss of MMR in mammalian cells has been linked to resistance to certain DNA damaging chemotherapeutic agents, as well as to increase risk of cancer. Mismatch repair pathway is considered to involve the concerted action of at least 20 proteins. The most abundant MMR mismatch-binding factor in eukaryotes, MutSα, recognizes and initiates the repair of base-base mismatches and small insertion/deletion. We performed molecular dynamics simulations on mismatched and damaged MutSα-DNA complexes. A comprehensive DNA binding site analysis of relevant conformations shows that MutSα proteins recognize the mismatched and platinum cross-linked DNA substrates in significantly different modes. Distinctive conformational changes associated with MutSα binding to mismatched and damaged DNA have been identified and they provide insight into the involvement of MMR proteins in DNA-repair and DNA-damage pathways. Stability and allosteric interactions at the heterodimer interface associated with the mismatch and damage recognition step allow for prediction of key residues in MMR cancer-causing mutations. A rigorous hydrogen bonding analysis for ADP molecules at the ATPase binding sites is also presented. Due to extended number of known MMR cancer causing mutations among the residues proved to make specific contacts with ADP molecules, recommendations for further studies on similar mutagenic effects were made.  相似文献   

18.
Hombauer H  Campbell CS  Smith CE  Desai A  Kolodner RD 《Cell》2011,147(5):1040-1053
DNA mismatch repair (MMR) increases replication fidelity by eliminating mispaired bases resulting from replication errors. In Saccharomyces cerevisiae, mispairs are primarily detected by the Msh2-Msh6 complex and corrected following recruitment of the Mlh1-Pms1 complex. Here, we visualized functional fluorescent versions of Msh2-Msh6 and Mlh1-Pms1 in living cells. We found that the Msh2-Msh6 complex is an S phase component of replication centers independent of mispaired bases; this localized pool accounted for 10%-15% of MMR in wild-type cells but was essential for MMR in the absence of Exo1. Unexpectedly, Mlh1-Pms1 formed nuclear foci that, although dependent on Msh2-Msh6 for formation, rarely colocalized with Msh2-Msh6 replication-associated foci. Mlh1-Pms1 foci increased when the number of mispaired bases was increased; in contrast, Msh2-Msh6 foci were unaffected. These findings suggest the presence of replication machinery-coupled and -independent pathways for mispair recognition by Msh2-Msh6, which direct formation of superstoichiometric Mlh1-Pms1 foci that represent sites of active MMR.  相似文献   

19.
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.  相似文献   

20.
Mechanisms and functions of DNA mismatch repair   总被引:20,自引:1,他引:19  
Li GM 《Cell research》2008,18(1):85-98
DNA mismatch repair (MMR) is a highly conserved biological pathway that plays a key role in maintaining genomic stability. The specificity of MMR is primarily for base-base mismatches and insertion/deletion mispairs generated during DNA replication and recombination. MMR also suppresses homeologous recombination and was recently shown to play a role in DNA damage signaling in eukaryotic cells. Escherichia coli MutS and MutL and their eukaryotic homologs, MutSα and MutLα, respectively, are key players in MMR-associated genome maintenance. Many other protein components that participate in various DNA metabolic pathways, such as PCNA and RPA, are also essential for MMR. Defects in MMR are associated with genome-wide instability, predisposition to certain types of cancer including hereditary non-polyposis colorectal cancer, resistance to certain chemotherapeutic agents, and abnormalities in meiosis and sterility in mammalian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号