首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phytophthora spp. are serious pathogens that threaten numerous cultivated crops, trees, and natural vegetation worldwide. The soybean pathogen P. sojae has been developed as a model oomycete. Here, we report a bacterial artificial chromosome (BAC)-based, integrated physical map of the P. sojae genome. We constructed two BAC libraries, digested 8,681 BACs with seven restriction enzymes, end labeled the digested fragments with four dyes, and analyzed them with capillary electrophoresis. Fifteen data sets were constructed from the fingerprints, using individual dyes and all possible combinations, and were evaluated for contig assembly. In all, 257 contigs were assembled from the XhoI data set, collectively spanning approximately 132 Mb in physical length. The BAC contigs were integrated with the draft genome sequence of P. sojae by end sequencing a total of 1,440 BACs that formed a minimal tiling path. This enabled the 257 contigs of the BAC map to be merged with 207 sequence scaffolds to form an integrated map consisting of 79 superscaffolds. The map represents the first genome-wide physical map of a Phytophthora sp. and provides a valuable resource for genomics and molecular biology research in P. sojae and other Phytophthora spp. In one illustration of this value, we have placed the 350 members of a superfamily of putative pathogenicity effector genes onto the map, revealing extensive clustering of these genes.  相似文献   

3.
Availability of the human genome sequence and high similarity between humans and pigs at the molecular level provides an opportunity to use a comparative mapping approach to piggy-BAC the human genome. In order to advance the pig genome sequencing initiative, sequence similarity between large-scale porcine BAC-end sequences (BESs) and human genome sequence was used to construct a comparatively-anchored porcine physical map that is a first step towards sequencing the pig genome. A total of 50,300 porcine BAC clones were end-sequenced, yielding 76,906 BESs after trimming with an average read length of 538 bp. To anchor the porcine BACs on the human genome, these BESs were subjected to BLAST analysis using the human draft sequence, revealing 31.5% significant hits (E < e(-5)). Both genic and non-genic regions of homology contributed to the alignments between the human and porcine genomes. Porcine BESs with unique homology matches within the human genome provided a source of markers spaced approximately 70 to 300 kb along each human chromosome. In order to evaluate the utility of piggy-BACing human genome sequences, and confirm predictions of orthology, 193 evenly spaced BESs with similarity to HSA3 and HSA21 were selected and then utilized for developing a high-resolution (1.22 Mb) comparative radiation hybrid map of SSC13 that represents a fusion of HSA3 and HSA21. Resulting RH mapping of SSC13 covers 99% and 97% of HSA3 and HSA21, respectively. Seven evolutionary conserved blocks were identified including six on HSA3 and a single syntenic block corresponding to HSA21. The strategy of piggy-BACing the human genome described in this study demonstrates that through a directed, targeted comparative genomics approach construction of a high-resolution anchored physical map of the pig genome can be achieved. This map supports the selection of BACs to construct a minimal tiling path for genome sequencing and targeted gap filling. Moreover, this approach is highly relevant to other genome sequencing projects.  相似文献   

4.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

5.
6.
We constructed and characterized arrayed bacterial artificial chromosome (BAC) libraries of five Drosophila species (D. melanogaster, D. simulans, D. sechellia, D. auraria, and D. ananassae), which are genetically well characterized in the studies of meiosis, evolution, population genetics, and developmental biology. The BAC libraries comprise 8,000 to 12,500 clones for each species, estimated to cover the most of the genomes. We sequenced both ends of most of these BAC clones with a success rate of 91%. Of these, 53,701 clones consisting of non-repetitive BAC end sequences (BESs) were mapped with reference of the public D. melanogaster genome sequences. The BES mapping estimated that the BAC libraries of D. auraria and D. ananassae covered 47% and 57% of the D. melanogaster genome, respectively, and those of D. melanogaster, D. sechellia, and D. simulans covered 94-97%. The low coverage by BESs of D. auraria and D. ananassae may be due to the high sequence divergence with D. melanogaster. From the comparative BES mapping, 111 possible breakpoints of chromosomal rearrangements were identified in these four species. The breakpoints of the major chromosome rearrangement between D. simulans and D. melanogaster on the third chromosome were determined within 20 kb in 84E and 30 kb in 93E/F. Corresponding breakpoints were also identified in D. sechellia. The BAC clones described here will be an important addition to the Drosophila genomic resources.  相似文献   

7.
An ultradense genetic linkage map with >10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in "skeleton bin maps," which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in "bins." A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http://www.potatogenome.net).  相似文献   

8.
A BAC clone-based physical map of ovine major histocompatibility complex   总被引:7,自引:0,他引:7  
Liu H  Liu K  Wang J  Ma RZ 《Genomics》2006,88(1):88-95
An ovine bacterial artificial chromosome (BAC) library containing 190,000 BAC clones was constructed and subsequently screened to construct a BAC-based physical map for the ovine major histocompatibility complex (MHC). Two hundred thirty-three BAC clones were selected by 84 overgo probes designed on human, mouse, and swine MHC sequence homologies. Ninety-four clones were ordered by DNA fingerprinting to form contigs I, II, and III that correspond to ovine MHC class I-class III, class IIa, and class IIb. The minimum tiling paths of contigs I, II, and III are 15, 4, and 4 BAC clones, spanning approximately 1900, 400, and 300 kb, respectively. The order and orientation of most BAC clones in each contig were confirmed by BAC-end sequencing. An open gap exists between class IIa and class III. This work helps to provide a foundation for detailed study of ovine MHC genes and of evolution of MHCs in mammals.  相似文献   

9.
A physical map of the bovine genome   总被引:1,自引:1,他引:0       下载免费PDF全文

Background

Cattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing project.

Results

A bovine BAC map was constructed with HindIII restriction digest fragments of 290,797 BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two genetic maps and marker scores from three whole-genome RH panels were consolidated on a 17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high, although discrepancies exist. The composite and BAC maps are more similar than either is to the draft assembly.

Conclusion

Further refinement of the maps and greater integration into the genome assembly process may contribute to a high quality assembly. The maps provide resources to associate phenotypic variation with underlying genomic variation, and are crucial resources for understanding the biology underpinning this important ruminant species so closely associated with humans.  相似文献   

10.
11.
The analysis of patterns of genome evolution may help to evaluate the evolutionary forces that shape the composition and organization of the genome. Comparisons between the physical maps of divergent species can be used to identify conserved blocks of closely linked genes whose synteny is possibly under selective constraint. We have used in situ hybridization to determine the genomic position of 732 randomly selected clones from a bacteriophage P1 library of Drosophila virilis. The resulting map includes at least one clone in each of 69% of the subdivisions into which the D. virilis polytene chromosomes are divided. A subset of these clones was used to carry out a comparative physical analysis of chromosome 2 from D. virilis and from Drosophila montana. A number of discrepancies with the classical scenario of chromosome evolution were noted. The D. virilis P1 clones were also used to determine the physical relations between ten genes that are located in the X chromosome of Drosophila melanogaster between the markers crn (2F1) and omb (4C5-6). In this region, which is approximately 2 Mb in length, there have been at least six breakpoints since the divergence of the species, and six of the genes are found at widely scattered locations in the D. virilis X chromosome. However, a block of four functionally unrelated genes, including white, roughest, Notch, and dunce, seems to be conserved between the two species. Received: 1 March 1996 / Accepted: 8 February 1997  相似文献   

12.
Five hundred and six EST-derived markers, 313 SSR markers and 26 BAC end-derived or SCAR markers were anchored by PCR on a subset of a Cabernet Sauvignon BAC library representing six genome equivalents pooled in three dimensions. In parallel, the 12,351 EST clusters of the grapevine UniGene set (build #11) from NCBI were used to design 12,125 primers pairs and perform electronic PCR on 67,543 nonredundant BAC-end sequences. This in silico experiment yielded 1,140 positive results concerning 638 different markers, among which 602 had not been already anchored by PCR. The data obtained will provide an easier access to the regulatory sequences surrounding important genes (represented by ESTs). In total, 1,731 islands of BAC clones (set of overlapping BAC clones containing at least one common marker) were obtained and 226 of them contained at least one genetically mapped anchor. These assigned islands are very useful because they will link the genetic map and the future fingerprint-based physical map and because they allowed us to indirectly place 93 ESTs on the genetic map. The islands containing two or more mapped SSR markers were also used to assess the quality of the integrated genetic map of the grapevine genome.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .Didier Lamoureux and Anne Bernole contributed equally to this work.  相似文献   

13.
A physical map of the Mycoplasma genitalium genome   总被引:17,自引:1,他引:16  
We report the construction of a physical map of the genome of the human pathogen Mycoplasma genitalium through the use of pulse-field gel electrophoresis. The small size and relative simplicity of this genome permit the arrangement of restriction fragments without having to construct linking clones. The size of the genome has been calculated to be approximately 600 kb and several important genetic determinants have been assigned specific loci on the map.  相似文献   

14.
Han Y  Gasic K  Marron B  Beever JE  Korban SS 《Genomics》2007,89(5):630-637
Genome-wide physical mapping is an essential step toward investigating the genetic basis of complex traits as well as pursuing genomics research of virtually all plant and animal species. We have constructed a physical map of the apple genome from a total of 74,281 BAC clones representing approximately 10.5x haploid genome equivalents. The physical map consists of 2702 contigs, and it is estimated to span approximately 927 Mb in physical length. The reliability of contig assembly was evaluated by several methods, including assembling contigs using variable stringencies, assembling contigs using fingerprints from individual libraries, checking consensus maps of contigs, and using DNA markers. Altogether, the results demonstrated that the contigs were properly assembled. The apple genome-wide BAC-based physical map represents the first draft genome sequence not only for any member of the large Rosaceae family, but also for all tree species. This map will play a critical role in advanced genomics research for apple and other tree species, including marker development in targeted chromosome regions, fine-mapping and isolation of genes/QTL, conducting comparative genomics analyses of plant chromosomes, and large-scale genomics sequencing.  相似文献   

15.
Summary The chloroplast genome of the IS1112C cytoplasm of sorghum was mapped by the construction of a Bam-HI library in pUC8, and hybridization with BamHI, SalI, and PstI digests of chloroplast DNA (ctDNA) of sorghum and maize. The molecules are extensively colinear, with only one of 13 SalI fragments differing slightly from maize. Seven of 70 restriction sites differed in the two species. A total molecular size of ca. 138 kb was estimated for sorghum. The inverted repeat was not conserved between sorghum and maize, as revealed by a slightly larger BamHI 16S rDNA fragment in sorghum. Homology of a sequence adjacent to the bcl gene and one end of the inverted repeat was detected. These homologies were also observed in maize, and suggest that the ctDNA genomes of sorghum and maize share small reiterations of sequences of the inverted repeat.USDA-ARS  相似文献   

16.
Transposable elements (TEs) are viewed as major contributors to the evolution of fungal genomes. Genomic resources such as BAC libraries are an underutilized resource for studying genome-wide TE distribution. Using the BAC end sequences and physical map that are available for the rice blast fungus, Magnaporthe grisea, we describe a likelihood ratio test designed to identify clustering of TEs in the genome. A significant variation in the distribution of three TEs, MAGGY, MGL, and Pot2 was observed among the fingerprint contigs of the physical map. We utilized a draft sequence of M. grisea chromosome 7 to validate our results and found a similar pattern of clustering. By examining individual BAC end sequences, we found evidence for 11 unique integrations of MAGGY or MGL into Pot2 but no evidence for the reciprocal integration of Pot2 into another TE. This suggests that: (a) the presence of Pot2 in the genome predates that of the other TEs, (b) Pot2 was less transpositionally active than other TEs, or (c) that MAGGY and MGL have integration site preference for Pot2. High transition/transversion mutation ratios as well as bias in transition site context was observed in MAGGY and MGL elements, but not in Pot2 elements. These features are consistent with the effects of a Repeat-Induced Point (RIP) mutation-like process occurring in MAGGY and MGL elements. This study illustrates the general utility of a physical map and BAC end sequences for the study of genome-wide repetitive DNA content and organization.  相似文献   

17.
18.
A BAC-based physical map of the channel catfish genome   总被引:3,自引:0,他引:3  
Xu P  Wang S  Liu L  Thorsen J  Kucuktas H  Liu Z 《Genomics》2007,90(3):380-388
Catfish is the major aquaculture species in the United States. To enhance its genome studies involving genetic linkage and comparative mapping, a bacterial artificial chromosome (BAC) contig-based physical map of the channel catfish (Ictalurus punctatus) genome was generated using four-color fluorescence-based fingerprints. Fingerprints of 34,580 BAC clones (5.6x genome coverage) were generated for the FPC assembly of the BAC contigs. A total of 3307 contigs were assembled using a cutoff value of 1x10(-20). Each contig contains an average of 9.25 clones with an average size of 292 kb. The combined contig size for all contigs was 0.965 Gb, approximately the genome size of the channel catfish. The reliability of the contig assembly was assessed by both hybridization of gene probes to BAC clones contained in the fingerprinted assembly and validation of randomly selected contigs using overgo probes designed from BAC end sequences. The presented physical map should greatly enhance genome research in the catfish, particularly aiding in the identification of genomic regions containing genes underlying important performance traits.  相似文献   

19.
We constructed a 5000-rad comprehensive radiation hybrid (RH) map of the porcine (Sus scrofa) genome and compared the results with the human genome. Of 4475 typed markers, 4016 (89.7%) had LOD >5 compared with the markers used in our previous RH map by means of two-point analysis and were grouped onto the 19 porcine chromosomes (SSCs). All mapped markers had LOD >3 as determined by RHMAPPER analysis. The current map comprised 430 microsatellite (MS) framework markers, 914 other MS markers, and 2672 expressed sequence tags (ESTs). The whole-genome map was 8822.1 cR in length, giving an average marker density of 0.342 Mb/cR. The average retention frequency was 35.8%. Using BLAST searches of porcine ESTs against the RefSeq human nucleotide and amino acid sequences (release 22), we constructed high-resolution comparative maps of each SSC and each human chromosome (HSA). The average distance between ESTs in the human genome was 1.38 Mb. SSC contained 50 human chromosomal syntenic groups, and SSC11, SSC12, and SSC16 were only derived from the HSA13q, HSA17, and HSA5 regions, respectively. Among 38 porcine terminal regions, we found that at least 20 regions have been conserved between the porcine and human genomes; we also found four paralogous regions for the major histocompatibility complex (MHC) on SSC7, SSC2, SSC4, and SSC1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
A physical genome map of Pseudomonas aeruginosa PAO.   总被引:23,自引:0,他引:23       下载免费PDF全文
A complete macrorestriction map of the 5.9 Mb genome of Pseudomonas aeruginosa PAO (DSM 1707) was constructed by the combination of various one- and two-dimensional pulsed field gel electrophoresis techniques. A total of 51 restriction sites (36 SpeI sites, 15 DpnI sites) were placed on the physical map yielding an average resolution of 110 kb. Several genes encoding virulence factors and enzymes of metabolic pathways were located on the anonymous map by Southern hybridization. Distances between the gene loci were similar on the genetic and physical maps, suggesting an even distribution of genome mobility throughout the bacterial chromosome. The four rRNA operons were organized in pairs of inverted repeats. The two-dimensional macro-restriction techniques described herein are generally applicable for the genome mapping of any prokaryote and lower eukaryote which yields resolvable fragment patterns on two-dimensional pulsed field gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号