首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clara cell secretory protein (CCSP) is a protective lung protein that is believed to have antioxidant, immunomodulatory, and anticarcinogenic properties; to be present in all adult mammals; and to be well conserved in rodents, humans, and nonhuman primates. The rationale for this study is to define the distribution and abundance of CCSP in the airway epithelium and lavage fluid of the adult rhesus monkey and to provide information for evaluating CCSP as a marker of Clara cells and as a biomarker of lung health. Lung tissue and lavage fluid from 3-yr-old rhesus monkeys were examined using histopathology and immunohistochemistry. Proximal bronchi, midlevel bronchi, and terminal/respiratory bronchioles were compared for immunohistochemical localization of CCSP in three-dimensional whole mounts as well as in paraffin and Araldite sections. Immunoreactive CCSP was found in nonciliated cells throughout the airway epithelium. Proximal and midlevel airways had the highest labeling. CCSP decreased in distal airways, and respiratory bronchioles had little to no CCSP. CCSP in the most distal airways was in tall cuboidal cells adjacent to the pulmonary artery. Although a large number of cells were present in the terminal bronchioles that would be classified as Clara cells based on morphology (nonciliated cells with apical protrusions), only a small number stained positively for immunoreactive CCSP. Semiquantitative analysis of Western blots indicated that changes in lavage CCSP are consistent with, and may be predictive of, overall CCSP levels in the airway epithelium in this primate species that is phylogenetically similar to humans.  相似文献   

2.
Several recent studies suggest the isolation of stem cells in skeletal muscle, but the functional properties of these muscle-derived stem cells is still unclear. In the present study, we report the purification of muscle-derived stem cells from the mdx mouse, an animal model for Duchenne muscular dystrophy. We show that enrichment of desmin(+) cells using the preplate technique from mouse primary muscle cell culture also enriches a cell population expressing CD34 and Bcl-2. The CD34(+) cells and Bcl-2(+) cells were found to reside within the basal lamina, where satellite cells are normally found. Clonal isolation and characterization from this CD34(+)Bcl-2(+) enriched population yielded a putative muscle-derived stem cell, mc13, that is capable of differentiating into both myogenic and osteogenic lineage in vitro and in vivo. The mc13 cells are c-kit and CD45 negative and express: desmin, c-met and MNF, three markers expressed in early myogenic progenitors; Flk-1, a mouse homologue of KDR recently identified in humans as a key marker in hematopoietic cells with stem cell-like characteristics; and Sca-1, a marker for both skeletal muscle and hematopoietic stem cells. Intramuscular, and more importantly, intravenous injection of mc13 cells result in muscle regeneration and partial restoration of dystrophin in mdx mice. Transplantation of mc13 cells engineered to secrete osteogenic protein differentiate in osteogenic lineage and accelerate healing of a skull defect in SCID mice. Taken together, these results suggest the isolation of a population of muscle-derived stem cells capable of improving both muscle regeneration and bone healing.  相似文献   

3.
Clara cells are nonciliated secretory cells lining the respiratory epithelium and are easily identified by the expression of Clara cell secretory protein (CCSP). To investigate molecular mechanism(s) regulating Clara cell function in the lungs, Cre recombinase was inserted into exon 1 of the CCSP, generating two novel mouse models, CCSP(Cre-Neo) and CCSP(Cre). These two models differ only by the inclusion of the neomycin resistance gene. These mice were bred to the R26R reporter mouse to investigate the tissue and cell specificity of Cre-mediated recombination. The efficiency of Cre recombination in the CCSP(Cre) mouse model was higher than in the CCSP(Cre-Neo) mouse model. Recombination was detected at D 4.5 in CCSP(Cre-Neo)/R26R mice and at D 0.5 in CCSP(Cre)/R26R mice. The CCSP(Cre-Neo) and CCSP(Cre) mouse models provide valuable tools for the ablation of genes in the postnatal mouse Clara cells.  相似文献   

4.
5.
Clara cell secretory protein (CCSP) has been shown to have anti-inflammatory and immunomodulatory functions in the lung. Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and young children. RSV usually infects small airways and likely interacts with the Clara cells of bronchioles. To determine a possible role for CCSP during acute RSV infection, CCSP-deficient (CCSP(-/-)) and wild-type (WT) mice were intratracheally infected with RSV and the lung inflammatory and immune responses to RSV infection were assessed. RSV-F gene expression was increased in the lungs of CCSP(-/-) mice as compared with WT mice following RSV infection, consistent with increased viral persistence. Lung inflammation was significantly increased in CCSP(-/-) mice as compared with WT mice after infection. Moreover, although the levels of Th1 cytokines were similar, the levels of Th2 cytokines and neutrophil chemokines were increased in the lungs of CCSP(-/-) mice following infection. Physiologic endpoints of exacerbated lung disease, specifically airway reactivity and mucus production, were increased in CCSP(-/-) mice after RSV infection. Importantly, restoration of CCSP in the airways of CCSP(-/-) mice abrogated the increased viral persistence, lung inflammation, and airway reactivity. These findings suggest a role for CCSP and Clara cells in regulating lung inflammatory and immune responses to RSV infection.  相似文献   

6.
Clara cell secretory protein (CCSP) is one of the most abundant proteins in the airway surface fluid, and has many putative functions. Recent advances in the field of stem cells and lung regeneration have identified potentially new roles of CCSP and CCSP-expressing cell populations in airway maintenance, repair and regeneration. This review focuses on the airway regenerative potential of CCSP and the cells that express this protein. The use of this protein or CCSP-expressing cells as an indication of biologic processes that contribute to lung injury or repair is highlighted.  相似文献   

7.
The highly secretory Clara cells play a pivotal role in protecting the lung against inflammation and oxidative stress. This study reports the positional cloning of a novel protein required for Clara cell physiology in mouse lung development. The perinatal lethal N-ethyl-N-nitrosourea-induced l7Rn6(4234SB) allele contained a nonsense mutation in the previously hypothetical gene NM_026304 on chromosome 7. Whereas l7Rn6 mRNA levels were indistinguishable from wild type, l7Rn6(4234SB) homozygotes exhibited decreased expression of the truncated protein, suggesting protein instability. During late gestation, l7Rn6 was widely expressed in the cytoplasm of lung epithelial cells, whereas perinatal expression was restricted to the bronchiolar epithelium. Homozygosity for the l7Rn6(4234SB) allele did not affect early steps in lung patterning, growth, or cellular differentiation. Rather, mutant lungs demonstrated severe emphysematous enlargement of the distal respiratory sacs at birth. Clara cell pathophysiology was evident from decreased cytoplasmic CCSP and SP-B protein levels, enlargement and disorganization of the Golgi complex, and formation of aberrant vesicular structures. Additional support for a role in the secretory pathway derived from l7Rn6 localization to the endoplasmic reticulum. Thus, l7Rn6 represents a novel protein required for organization and/or function of the secretory apparatus in Clara cells in mouse lung.  相似文献   

8.
9.
A monoclonal antibody that identifies a membrane molecule unique in rat lung for type II alveolar epithelial cells was used to isolate these cells from enzymatically dispersed lung cells by fluorescence-activated cell sorting. Although multistep physical separation techniques have permitted the isolation of large quantities of these cells and flow cytometry has been used by others to isolate lamellar body-containing cells, the application of this antibody-directed sorting has distinct advantages. Because the marker molecule is expressed on immature type II cells prior to the development of lamellar bodies, the antibody will also permit their isolation and study.  相似文献   

10.
In small airways, Clara cells are the main epithelial cell type and play an important physiological role in surfactant production, protection against environmental agents, regulation of inflammatory and immune responses in the respiratory system. Thus, Clara cells are involved in lung homeostasis and pathologies like asthma, Chronic Obstructive Pulmonary Diseases (COPD) or cancers. To date, Clara cells implication in these pathological processes remains largely enigmatic. The engineering of a transgenic strain mouse allowing specific gene invalidation in Clara cells may be of interest to improve our knowledge about the genes involved in these diseases. By using the Cre/loxP strategy we report the engineering of a transgenic mouse strain with expression of Cre recombinase under the control of the Clara Cell Secretory Protein (CCSP) promoter. Specific staining and immuno-histochemistry performed after breeding with reporter mice revealed that CCSP drives a functional Cre expression specifically in Clara cells. This mouse strain is a powerful tool for Cre-loxP-mediated conditional recombination in the lung and represents a new tool to study Clara cell physiology.  相似文献   

11.
Differentiated cultures of primary hamster tracheal airway epithelial cells   总被引:5,自引:0,他引:5  
Summary Primary airway epithelial cell cultures can provide a faithful representation of the in vivo airway while allowing for a controlled nutrient source and isolation from other tissues or immune cells. The methods used have significant differences based on tissue source, cell isolation, culture conditions, and assessment of culture purity. We modified and optimized a method for generating tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function. Soon after initial plating, the epithelial cells reached a high transepithelial resistance and formed tight junctions. The cells differentiated into a heterogeneous, multicellular culture containing ciliated, secretory, and basal cells after culture at an air-liquid interface (ALI). The, secretory cell populations initially consisted of MUC5AC-positive goblet cells and MUC5AC/CCSP double-positive cells, but the makeup changed to predominantly Clara cell secretory protein (CCSP)-positive Clara cells after 14 d. The ciliated cell populations differentiated rapidly after ALI as judged by the appearance of β tubulin IV-positive cells. The cultures produced mucus, CCSP, and trypsin-like proteases and were capable of wound repair as judged by increased expression of matrilysin. Our method provides an efficient, high-yield protocol for producing differentiated hamster tracheal epithelial cells that can be used for a variety of in vitro studies including tracheal cell differentiation, airway disease mechanisms, and pathogen-host interactions.  相似文献   

12.
The relationships between airway epithelial Cl(-) secretion-Na(+) absorption balance, airway surface liquid (ASL) homeostasis, and lung disease were investigated in selected transgenic mice. 1) To determine if transgenic overexpression of wild-type (WT) human CFTR (hCFTR) accelerated Cl(-) secretion and regulated Na(+) absorption in murine airways, we utilized a Clara cell secretory protein (CCSP)-specific promoter to generate mice expressing airway-specific hCFTR. Ussing chamber studies revealed significantly (~2.5-fold) elevated basal Cl(-) secretory currents in CCSP-hCFTR transgenic mouse airways. Endogenous murine airway Na(+) absorption was not regulated by hCFTR, and these mice exhibited no lung disease. 2) We tested whether hCFTR, transgenically expressed on a transgenic mouse background overexpressing the β-subunit of the epithelial Na(+) channel (β-ENaC), restored ion transport balance and ASL volume homeostasis and ameliorated lung disease. Both transgenes were active in CCSP-hCFTR/β-ENaC transgenic mouse airways, which exhibited an elevated basal Cl(-) secretion and Na(+) hyperabsorption. However, the airway disease characteristic of β-ENaC mice persisted. Confocal studies of ASL volume homeostasis in cultured tracheal cells revealed ASL autoregulation to a height of ~6 μm in WT and CCSP-hCFTR cultures, whereas ASL was reduced to <4 μm in β-ENaC and CCSP-hCFTR/β-ENaC cultures. We conclude that 1) hCFTR overexpression increases basal Cl(-) secretion but does not regulate Na(+) transport in WT mice and 2) transgenic hCFTR produces increased Cl(-) secretion, but not regulation of Na(+) channels, in β-ENaC mouse airways and does not ameliorate β-ENaC mouse lung disease.  相似文献   

13.
The Clara cell is believed to be the progenitor of the peripheral airway epithelium, and it produces the surfactant proteins SP-A and SP-B, in addition to the 10-kDa Clara cell secretory protein (CCSP or CC10). To date, attempts to develop Clara cell lines have been unsuccessful. Most such attempts have involved the in vitro insertion of a transforming viral oncogene. We have reported previously the characterization of a differentiated conditionally immortalized murine lung Type II epithelial cell line, T7, from the H-2Kb-tsA58 transgenic mouse. We have also used this mouse model to derive Clara cell lines. In this model, the need for in vitro gene insertion is circumvented by the creation of a transgene, in which the large tumor antigen of a temperature-sensitive strain (tsA58) of the simian virus 40 (SV40) is fused with the major histocompatibility complex promoter H-2Kb. The promoter is active in a wide range of tissues and is induced by interferons (IFN). From the lungs of animals harboring the hybrid construct, we isolated and characterized Clara cells. The cells contain dense secretory granules and mitochondria typical of Clara cells, and express SP-A, SP-B, SP-D, and the Clara cell secretory protein, CC10. Withdrawal of the IFN and elevation of the incubation temperature permit normal cell differentiation similar to that of Clara cells in vivo. This cell line should be very useful for the investigation of normal Clara cell function and gene expression.  相似文献   

14.
CD56 identifies monocytes and not natural killer cells in rhesus macaques.   总被引:10,自引:0,他引:10  
BACKGROUND: CD56 is a lineage-specific marker of human natural killer (NK) cells. There are conflicts in the literature regarding the role of CD56 as a marker of NK cells in non-human primates. In the present study, we examined the role of CD56 in identifying rhesus NK cells. METHODS: The immunophenotype of normal macaque and human NK cells was analyzed by two- and three-color flow cytometry. Flow cytometric cell sorting was subsequently used to deplete or purify NK cells; the resulting cell populations were then used in standard chromium release assays of NK lytic function. RESULTS: In peripheral blood mononuclear cells of the rhesus macaque, CD56 was expressed primarily on cells with the light scatter and immunophenotypic profile of monocytes. Flow cytometric depletion of rhesus CD56(+) monocytic cells did not diminish functional activity against K562 cells, whereas depletion of CD8(+) or CD16(+) lymphocytes completely abrogated functional activity. Three-color flow cytometric analysis of CD8(+), CD16(+) lymphocytes showed that they expressed other markers (CD2, CD7, TIA-1) associated with NK cells, but notably, not CD56. CONCLUSIONS: These studies demonstrate that CD56 is not suitable as a marker of NK cells in the rhesus macaque.  相似文献   

15.
16.
Purified Clara cell secretory protein (CCSP) from rabbit lung was analyzed by SDS gel electrophoresis, and immunoblotting with a specific anti-uteroglobin antibody as well as for its ability to bind [3H]progesterone. The results obtained indicate that proteins CCSP and uteroglobin are identical.  相似文献   

17.
Lung epithelial-specific stem cells have been localized to discrete microenvironments throughout the adult conducting airway. Properties of these cells include pollutant resistance, multipotent differentiation, and infrequent proliferation. Goals of the present study were to use Hoechst 33342 efflux, a property of stem cells in other tissues, to purify and further characterize airway stem cells. Hoechst 33342 effluxing lung cells were identified as a verapamil-sensitive side population by flow cytometry. Lung side population cells were further subdivided on the basis of hematopoietic (CD45 positive) or nonhematopoietic (CD45 negative) origin. Nonhematopoietic side population cells were enriched for stem cell antigen-1 reactivity and expressed molecular markers specific to both airway and mesenchymal lineages. Analysis of the molecular phenotype of airway-derived side population cells indicates that they are similar to neuroepithelial body-associated variant Clara cells. Taken together, these data suggest that the nonhematopoietic side population isolated from lung is enriched for previously identified airway stem cells.  相似文献   

18.
Background aimsHuman endothelial progenitor cells (EPC) play an important role in regenerative medicine and contribute to neovascularization on vessel injury. They are usually enriched from peripheral blood, cord blood and bone marrow. In human fat tissue, EPC are rare and their isolation remains a challenge.MethodsFat tissue was prepared by collagenase digestion, and the expression of specific marker proteins was evaluated by flow cytometry in the stromal vascular fraction (SVF). For enrichment, magnetic cell sorting was performed with the use of CD133 microbeads and EPC were cultured until colonies appeared. A second purification was performed with CD34; additional isolation steps were performed with the use of a combination of CD34 and CD31 microbeads. Enriched cells were investigated by flow cytometry for the expression of endothelial specific markers, by Matrigel assay and by the uptake of acetylated low-density lipoprotein.ResultsThe expression pattern confirmed the heterogeneous nature of the SVF, with rare numbers of CD133+ detectable. EPC gained from the SVF by magnetic enrichment showed cobblestone morphology of outgrowth endothelial cells and expressed the specific markers CD31, CD144, vascular endothelial growth factor (VEGF)R2, CD146, CD73 and CD105. Functional integrity was confirmed by uptake of acetylated low-density lipoprotein and the formation of tube-like structures on Matrigel.ConclusionsRare EPC can be enriched from human fat tissue by magnetic cell sorting with the use of a combination of microbeads directed against CD133, an early EPC marker, CD34, a stem cell marker, and CD31, a typical marker for endothelial cells. In culture, they differentiate into EC and hence could have the potential to contribute to neovascularization in regenerative medicine.  相似文献   

19.
20.
Expression of sonic hedgehog (Shh) is required for normal development of the lung during embryogenesis. Loss of Shh expression in mice results in tracheoesophageal fistula, lung hypoplasia, and abnormal lung lobulation. To determine whether Shh may play a role later in lung morphogenesis, immunostaining for Shh was performed in mouse lung from embryonic day (E) 10.5 to postnatal day (PD) 24. Shh was detected in the distal epithelium of the developing mouse lung from E10.5 to E16.5. From E16.5 until PD15, Shh was present in epithelial cells in both the peripheral and conducting airways. Although all cells of the developing epithelium uniformly expressed Shh at E10.5, Shh expression was restricted to subsets of epithelial cells by E16.5. Between E16.5 and PD15, non-uniform Shh staining of epithelial cells was observed in the conducting airways in a pattern consistent with the distribution of non-ciliated bronchiolar cells (i.e., Clara cells) and the Clara cell marker CCSP. Shh did not co-localize with hepatocyte nuclear factor/forkhead homologue-4 (HFH-4), beta-tubulin, or with the presence of cilia. These results support the concept that Shh plays a distinct regulatory role in the lung later in morphogenesis, when it may influence formation or cytodifferentiation of the conducting airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号