首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.

Background

Insects are known to rely on terrestrial landmarks for navigation. Landmarks are used to chart a route or pinpoint a goal. The distant panorama, however, is often thought not to guide navigation directly during a familiar journey, but to act as a contextual cue that primes the correct memory of the landmarks.

Results

We provided Melophorus bagoti ants with a huge artificial landmark located right near the nest entrance to find out whether navigating ants focus on such a prominent visual landmark for homing guidance. When the landmark was displaced by small or large distances, ant routes were affected differently. Certain behaviours appeared inconsistent with the hypothesis that guidance was based on the landmark only. Instead, comparisons of panoramic images recorded on the field, encompassing both landmark and distal panorama, could explain most aspects of the ant behaviours.

Conclusion

Ants navigating along a familiar route do not focus on obvious landmarks or filter out distal panoramic cues, but appear to be guided by cues covering a large area of their panoramic visual field, including both landmarks and distal panorama. Using panoramic views seems an appropriate strategy to cope with the complexity of natural scenes and the poor resolution of insects' eyes. The ability to isolate landmarks from the rest of a scene may be beyond the capacity of animals that do not possess a dedicated object-perception visual stream like primates.  相似文献   

2.
Harris MA  Wolbers T 《Hippocampus》2012,22(8):1770-1780
Navigation abilities show marked decline in both normal ageing and dementia. Path integration may be particularly affected, as it is supported by the hippocampus and entorhinal cortex, both of which show severe degeneration with ageing. Age differences in path integration based on kinaesthetic and vestibular cues have been clearly demonstrated, but very little research has focused on visual path integration, based only on optic flow. Path integration is complemented by landmark navigation, which may also show age differences, but has not been well studied either. Here we present a study using several simple virtual navigation tasks to explore age differences in path integration both with and without landmark information. We report that, within a virtual environment that provided only optic flow information, older participants exhibited deficits in path integration in terms of distance reproduction, rotation reproduction, and triangle completion. We also report age differences in triangle completion within an environment that provided landmark information. In all tasks, we observed a more restricted range of responses in the older participants, which we discuss in terms of a leaky integrator model, as older participants showed greater leak than younger participants. Our findings begin to explain the mechanisms underlying age differences in path integration, and thus contribute to an understanding of the substantial decline in navigation abilities observed in ageing.  相似文献   

3.
Some psychophysics of the pigeon's use of landmarks   总被引:3,自引:0,他引:3  
1. Three pigeons (Columba livia) were trained to find hidden food in a sunken well (3.3 cm in diameter) at a constant place within an (160 cm x 160 cm) experimental box (Fig. 1). After learning the location, the animals were tested occasionally with the well and food absent. Landmarks in the experimental box might be transformed on such tests. 2. Changing the height or width of a nearby landmark had no systematic influence on the position of peak search. Translating a nearby landmark, however, led to a shift in peak search position. All three birds then searched most somewhere between the original goal location, as defined by the unmoved landmarks, and the goal location as defined by the shifted landmark. Within a limited range of landmark shift, the peak shift as a function of landmark shift is linear (Fig. 3). 3. To explain the data (Fig. 7), the pigeon records at the location of the goal the algebraic vectors from a number of landmarks to the goal. These vectors have both a direction and a distance component. When searching for the goal again in the experimental box, it computes independently for each landmark a navigation vector. This is arrived at by vector-adding the algebraic vector from the bird's current position to the landmark in question, supplied by perception, to the corresponding landmark-goal vector in its record. The pigeon moves in the direction and distance specified by a weighted average of the independently calculated navigation vectors. For positive vector weights, vector geometry guarantees that the bird would search somewhere between the original goal and the goal according to the shifted landmark. The extent to which it shifts toward the shifted goal reflects the vector weight given to the shifted landmark.  相似文献   

4.
Migrating insects may fly over large bodies of water that lack landmarks, but little is known about their ability to navigate in such a fluid environment. Using boat navigation instruments to measure compensation for fluctuations in crosswind drift, I investigated the ability of butterflies (Lepidoptera: Hesperiidae, Nymphalidae and Pieridae) to orient with and without landmarks as they migrated naturally over the Caribbean Sea. I used the presence or absence of landmarks or clouds to evaluate their use by the butterflies as guides for compensation. Forty-one per cent of the butterflies compensated for crosswind drift, whereas only 16% did not compensate. No conclusion could be drawn for the remainder. Without landmarks or clouds, butterflies were significantly less likely to compensate for drift than when these local cues were present. Butterflies were more likely to compensate fully in the presence of a landmark than when only clouds were present. Phoebis sennae butterflies drifted in the morning and overcompensated for drift in the afternoon, a pattern found both within and between individuals independent of landmarks. Although I cannot exclude the use of clouds, this would probably result in undercompensation. Hence, a ground reference in conjunction with a sun or magnetic compass is the most likely orientation cue. In the absence of clouds, one butterfly compensated, at least in part, indicating that it was using ripples on the sea surface as a ground reference in conjunction with a sun or magnetic compass. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

5.
A new type of network is proposed that can be applied to landmark navigation. It solves the guidance task, that is, it finds a nonvisually marked location using knowledge concerning its spatial relation to other, visible landmarks. The path to the searched location is not disturbed if a landmark is not visible for some time. The network can also describe findings obtained by experiments with insects and rodents, where the position of the landmarks has been changed after training. In this net, recognition does not occur by searching for a match between a pattern seen and the same pattern being stored but by searching for a match between a pattern seen with a prediction calculated from different data. A simple extension allows a unique match of the landmarks seen with the items stored in memory. With this extension a recognition of the individual landmark is not necessary. A specific output unit of the network can be interpreted in such a way as to show properties of place cells found in vertebrates and the function of the network proposed here as to determine the input to a place cell. The model can explain the observation that a given place cell can also be active when the animal moves in a different environment. An extension is discussed of how the network could be exploited for recognition-triggered response that allows animals to follow fixed routes.  相似文献   

6.
The antCataglyphis cursor was tested for its landmark-based homing in a laboratory setting. Workers were induced to go down a tube at the center of an arena to forage. On the periphery of the arena were four different black shapes serving as the only distinguishing visual landmarks, i.e., a cross, a circle, a triangle, and a square. The purpose was to show that the spatial memory of ants represents something of the overall arrangement of landmarks. When first released into the arena, the ants were not oriented toward home in their navigation. After 2 days of free access in the usual landmark setup, the ants learned to orient rapidly significantly goalward. When landmarks were all removed, they did not orient in any direction significantly. When the landmarks were rotated by 90°, their compass positions were changed but their relative positions maintained, and the ants rotated their heading by a similar amount. This rotated homing direction implies that the array of landmarks was used as the only source of directional determination. When the landmark nearest their home was absent, but the other three were in their usual places, the ants were slightly homeward oriented at one-quarter of the way, but not at one-half of the way when the other landmarks were behind them. When the landmarks were randomly permuted, both their compass positions and their overall spatial relationships were altered, and the ants were not significantly oriented in any direction. These results indicate that spatial memory in the antC. cursor encodes global landmark-landmark relations. Thus, ants can abstract certain topological properties of their environment.  相似文献   

7.
The period of territorial settlement is critical for territorial species, and the initial disputes to fix the boundaries can be energetically expensive. Territorial residents may be able to reduce defensive costs during settlement by selecting territories with landmarks at the sites of potential boundaries. We examined the effects of landmarks on defensive costs in a laboratory study of a cichlid fish, the blockhead, Steatocranus casuarius. In the landmark treatment, we placed a row of flat rocks across the centre of the aquaria; trials in the control treatment were identical but lacked landmarks. When landmarks were present, blockheads spent significantly less time in territorial defence, as they had fewer and shorter aggressive interactions with their neighbours. In addition, fights in landmark trials tended to be of lower intensity than fights in control trials: most fights in landmark trials included only low-level displays but most fights in control trials included physical contact. Both of these measures thus indicated that defensive costs were lowered by landmarks. In addition, in landmark trials typically both pairs of fish successfully established territories; in contrast, in control trials generally only one pair was able to establish a territory, with the other pair being evicted. The presence of landmarks appeared to make possible the division of the area available for settlement, with pairs establishing smaller territories than when there were no landmarks. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

8.
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.  相似文献   

9.
Landmark learning and visuo-spatial memories in gerbils   总被引:5,自引:0,他引:5  
The aim of this study is to understand what a rodent (Meriones unguiculatus) learns about the geometrical relations between a goal and nearby visual landmarks and how it uses this information to reach a goal. Gerbils were trained to find sunflower seeds on the floor of a light-tight, black painted room illuminated by a single light bulb hung from the ceiling. The position of the seed on the floor was specified by an array of one or more landmarks. Once training was complete, we recorded where the gerbils searched when landmarks were present but the seed was absent. In such tests, gerbils were confronted either with the array of landmarks to which they were accustomed or with a transformation of this array. Animals searched in the appropriate spot when trained to find seeds placed in a constant direction and at a constant distance from a single cylindrical landmark. Since gerbils look in one spot and not in a circle centred on the landmark, the direction between landmark and goal must be supplied by cues external to the landmark array. Distance, on the other hand, must be measured with respect to the landmark. Tests in which the size of the landmark was altered from that used in training suggest that distance is not learned solely in terms of the apparent size of the landmark as seen from the goal. Gerbils can still reach a goal defined by an array of landmarks when the room light is extinguished during their approach. This ability implies that they have already planned a trajectory to the goal before the room is darkened. In order to compute such a trajectory, their internal representation of landmarks and goal needs to contain information about the distances and bearings between landmarks and goal. For planning trajectories, each landmark of an array can be used separately from the others. Gerbils trained to a goal specified by an array of several landmarks were tested with one or more of the landmarks removed or with the array expanded. They then searched as though they had computed an independent trajectory for each landmark. For instance, gerbils trained with an array of two landmarks were tested with the distance between two landmarks doubled. The animals then searched for seeds in two positions, which were at the correct distance and in the right direction from each landmark.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
 We combine experimental findings on ants and bees, and build on earlier models, to give an account of how these insects navigate using path integration, and how path integration interacts with other modes of navigation. At the core of path integration is an accumulator. This is set to an initial state at the nest and is updated as the insect moves so that it always reports the insect's current position relative to the nest. Navigation that uses path integration requires, in addition, a way of storing states of the accumulator at significant places for subsequent recall as goals, and a means of computing the direction to such goals. We discuss three models of how path integration might be used for this process, which we call vector navigation. Vector navigation is the principal means of navigating over unfamiliar terrain, or when landmarks are unavailable. Under other conditions, insects often navigate by landmarks, and ignore the output of the vector navigation system. Landmark navigation does not interfere with the updating of the accumulator. There is an interesting symmetry in the use of landmarks and path integration. In the short term, vector navigation can be independent of landmarks, and landmark navigation needs no assistance from path integration. In the longer term, visual landmarks help keep path vector navigation calibrated, and the learning of visual landmarks is guided by path integration. Received: 6 June 1999 / Accepted in revised form: 20 March 2000  相似文献   

11.
Wing venation provides useful characters with which to classify extant and fossil insects. Recently, quantification of its shape using landmarks has increased the potential of wing venation to distinguish taxa. However, the use of wing landmarks in phylogenetic analyses remains largely unexplored. Here, we tested landmark analysis under parsimony (LAUP) to include wing shape data in a phylogenetic analysis of hornets and yellow jackets. Using 68 morphological characters, nine genes and wing landmarks, we produced the first total‐evidence phylogeny of Vespinae. We also tested the influence of LAUP parameters using simulated landmarks. Our data confirmed that optimization parameters, alignment method, landmark number and, under low optimization parameters, the initial orientation of aligned shapes can influence LAUP results. Furthermore, single landmark configurations never accurately reflected the topology used for data simulation, but results were significantly close when compared to random topologies. Thus, wing landmark configurations were unreliable phylogenetic characters when treated independently, but provided some useful insights when combined with other data. Our phylogeny corroborated the monophyly of most groups proposed on the basis of morphology and showed the fossil Palaeovespa is distantly related to extant genera. Unstable relationships among genera suggest that rapid radiations occurred in the early history of the Vespinae.  相似文献   

12.
Anatomical landmarks are defined as biologically meaningful loci that can be unambiguously defined and repeatedly located with a high degree of accuracy and precision. The neurocranial surface is characteristically void of such loci. We define a new class of landmarks, termed fuzzy landmarks, that will allow us to represent the form of the neurocranium. A fuzzy landmark represents the position of a biological structure that is precisely delineated, but occupies an area that is larger than a single point in the observer's reference system. In this study, we present a test case in which the cranial bosses are evaluated as fuzzy landmarks. Five fuzzy landmarks (the cranial bosses) and three traditional landmarks were placed repeatedly by a single observer on three-dimensional (3D) computed tomography (CT) surface reconstructions of pediatric dry skulls and skulls of pediatric patients, and directly on four of the same dry skulls using a 3Space digitizer. Thirty landmark digitizing trials from CT scans show an average error of 1.15 mm local to each fuzzy landmark, while the average error for the last ten trials was 0.75 mm, suggesting a learning curve. Data collected with the 3Space digitizer was comparable. Measurement error of fuzzy landmarks is larger than that of traditional landmarks, but is acceptable, especially since fuzzy landmarks allow inclusion of areas that would otherwise go unsampled. The information obtained is valuable in growth studies, clinical evaluation, and volume measurements. Our method of fuzzy landmarking is not limited to cranial bosses, and can be applied to any other anatomical features with fuzzy boundaries. Am J Phys Anthropol 107:113–124, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
In the present study we investigated the role of spatial locative comprehension in learning and retrieving pathways when landmarks were available and when they were absent in a sample of typically developing 6- to 11-year-old children. Our results show that the more proficient children are in understanding spatial locatives the more they are able to learn pathways, retrieve them after a delay and represent them on a map when landmarks are present in the environment. These findings suggest that spatial language is crucial when individuals rely on sequences of landmarks to drive their navigation towards a given goal but that it is not involved when navigational representations based on the geometrical shape of the environment or the coding of body movements are sufficient for memorizing and recalling short pathways.  相似文献   

14.
Bees and wasps acquire a visual representation of their nest's environment and use it to locate their nest when they return from foraging trips. This representation contains among other features cues to the distance of near-by landmarks. We worked with two species of ground-nesting bees, Lasioglossum malachurum (Hymenoptera: Halictidae), Dasypoda hirtipes (Hymenoptera: Melittidae) and asked which cues to landmark distance they use during homing. Bees learned to associate a single cylindrical landmark with their nest's location. We subsequently tested returning bees with landmarks of different sizes and thus introduced large discrepancies between the angular size of the landmark as seen from the nest during training and its distance from the nest. The bees' search behaviour and their choice of dummy nest entrances show that both species of ground-nesting bees consistently search for their nest at the learned distance from landmarks. The influence of the apparent size of landmarks on the bees' search and choice behaviour is comparatively weak. We suggest that the bees exploit cues derived from the apparent speed of the landmark's image at their retina for distance evaluation.  相似文献   

15.
Although much is now known about the mechanisms that insects, birds and mammals use to orient within familiar areas, our knowledge of such mechanisms in fish is scant. I used the transformational approach to test whether the blind Mexican cave fish can encode shape and size in an internal representation of space. These fish are excellent study animals, as they swim at high velocities (presumably to enhance lateral line organ stimulation) when faced with unfamiliar landmarks or environments. As they are blind, potentially confounding cues from visual global landmarks are unavailable. The fish learnt a square configuration of four landmarks and so must have been be able to encode spatial relationships between the elements within this configuration. After learning landmark arrays, the cave fish showed significant dishabituation (swimming velocity was increased) when exposed to landmark transformations. The fish must therefore have been comparing the environment that they perceived with an internal representation of the environment that they had learnt. The results show that blind Mexican cave fish can encode size (absolute distance between landmarks) and possibly also shape within their spatial maps.  相似文献   

16.
Few studies have examined how landmarks affect territories'' fundamental characteristics. In this field study, we investigated effects of landmarks on territory size, shape and location in a cichlid fish (Amatitlania siquia). We provided cans as breeding sites and used plastic plants as landmarks. During 10 min trials, we recorded locations where residents chased intruders and used those locations to outline and measure the territory. In two experiments, we observed pairs without landmarks and with either a point landmark (one plant) or linear landmark (four plants) placed near the nest can. We alternated which trial occurred first and performed the second trial 24 h after the first. Territories were approximately round without landmarks or with a point landmark but were significantly more elongated when we added a linear landmark. Without landmarks, nests were centrally located; however, with any landmark, pairs set territory boundaries closer to the landmark and thus the nest. Territory size was significantly reduced in the presence of any landmark. This reduction suggests that a smaller territory with well-defined boundaries has greater benefits than a larger territory with less well-defined borders.  相似文献   

17.
Neuroanatomic phenotypes are often assessed using volumetric analysis. Although powerful and versatile, this approach is limited in that it is unable to quantify changes in shape, to describe how regions are interrelated, or to determine whether changes in size are global or local. Statistical shape analysis using coordinate data from biologically relevant landmarks is the preferred method for testing these aspects of phenotype. To date, approximately fifty landmarks have been used to study brain shape. Of the studies that have used landmark-based statistical shape analysis of the brain, most have not published protocols for landmark identification or the results of reliability studies on these landmarks. The primary aims of this study were two-fold: (1) to collaboratively develop detailed data collection protocols for a set of brain landmarks, and (2) to complete an intra- and inter-observer validation study of the set of landmarks. Detailed protocols were developed for 29 cortical and subcortical landmarks using a sample of 10 boys aged 12 years old. Average intra-observer error for the final set of landmarks was 1.9 mm with a range of 0.72 mm–5.6 mm. Average inter-observer error was 1.1 mm with a range of 0.40 mm–3.4 mm. This study successfully establishes landmark protocols with a minimal level of error that can be used by other researchers in the assessment of neuroanatomic phenotypes.  相似文献   

18.
Using a novel visual search paradigm McCarley et al. (2003) concluded that the oculomotor system keeps a history of 3-4 previously attended objects. However, their displays were visually sparse, denying participants structural information which might be used during normal search. This might have underestimated memory capacity. To examine this possibility, we included landmarks in the same search paradigm. Previously examined items were re-examined less frequently when landmarks were present compared to when they were absent. Results indicate that objects in the environment that share no features with search items are used as external support to aid memory in guiding visual search.  相似文献   

19.
In order to analyse how landmarks guide the last stages of an insect's approach to a goal, we recorded many flights of individual wasps and honeybees as they flew to an inconspicuous feeder on the ground that was marked by one or by two nearby landmarks. An individual tends to approach the feeder from a constant direction, flying close to the ground. Its body is oriented in roughly the same horizontal direction during the approach so that the feeder and landmarks are viewed over a narrow range of directions. Consequently, when the insect arrives at the feeder, the landmarks take up a standard position on the retina. Three navigational strategies govern the final approach. The insect first aims at a landmark, treating it as a beacon. Secondly, bees learn the appearance of a landmark with frontal retina and they associate with this stored view a motor trajectory which brings them from the landmark sufficiently close to the goal that it can be reached by image matching. Insects then move so as to put the landmark in its standard retinal position. Image matching is shown to be accomplished by a control system which has as set points the standard retinal position of the landmark and some parameter related to its retinal size. Accepted: 1 March 1997  相似文献   

20.
Vision provides the most important sensory information for spatial navigation. Recent technical advances allow new options to conduct more naturalistic experiments in virtual reality (VR) while additionally gathering data of the viewing behavior with eye tracking investigations. Here, we propose a method that allows one to quantify characteristics of visual behavior by using graph-theoretical measures to abstract eye tracking data recorded in a 3D virtual urban environment. The analysis is based on eye tracking data of 20 participants, who freely explored the virtual city Seahaven for 90 minutes with an immersive VR headset with an inbuild eye tracker. To extract what participants looked at, we defined “gaze” events, from which we created gaze graphs. On these, we applied graph-theoretical measures to reveal the underlying structure of visual attention. Applying graph partitioning, we found that our virtual environment could be treated as one coherent city. To investigate the importance of houses in the city, we applied the node degree centrality measure. Our results revealed that 10 houses had a node degree that exceeded consistently two-sigma distance from the mean node degree of all other houses. The importance of these houses was supported by the hierarchy index, which showed a clear hierarchical structure of the gaze graphs. As these high node degree houses fulfilled several characteristics of landmarks, we named them “gaze-graph-defined landmarks”. Applying the rich club coefficient, we found that these gaze-graph-defined landmarks were preferentially connected to each other and that participants spend the majority of their experiment time in areas where at least two of those houses were visible. Our findings do not only provide new experimental evidence for the development of spatial knowledge, but also establish a new methodology to identify and assess the function of landmarks in spatial navigation based on eye tracking data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号