首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南极鱼类多样性和适应性进化研究进展   总被引:3,自引:0,他引:3  
南极地区是地球上唯一未被人类活动大量影响的地区, 其极端寒冷的环境为南极生物的进化提供了“温床”。过去三千万年间, 南极鱼亚目鱼类在南极海洋逐渐变冷的过程中快速进化, 从一个温暖海域的底栖祖先分化成南极海域最为多样化的鱼类类群。由于其在南极圈内和南极圈外的各种温度区间都有分布, 因而成为研究鱼类适应性进化和耐寒机制的良好生物模型。本文综述了有关南极海域鱼类区系组成与物种多样性现状, 南极鱼亚目鱼类适应低温的一系列特化的生物学性状及其关键的遗传进化机制。现有研究表明: 南极鱼类在几千万年零度以下低温环境的进化中发生了大量基因的大规模扩增和基因表达的改变, 如铁调素、卵壳蛋白和逆转座子等118个基因发生了显著的扩增。另外, 有些从南极鱼中获得的抗寒基因已经用于提高动植物低温抗性的研究并取得了良好的效果。在今后的几年中, 将会有多个南极鱼物种的全基因组得到破译, 在低温适应相关基因的功能和进化方面的研究也会更加深入, 这些研究将深入揭示低温压力下基因组的进化规律以及鱼类低温适应的分子机制。  相似文献   

2.
Levels of ubiquitin (Ub)-conjugated proteins, as an index of misfolded or damaged proteins, were measured in notothenioid fishes, with both Antarctic (Trematomus bernacchii, T. pennellii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) distributions, as well as non-notothenioid fish from the Antarctic (Lycodichthys dearborni, Family Zoarcidae) and New Zealand (Bellapiscis medius, Family Tripterygiidae), in an effort to better understand the effect that inhabiting a sub-zero environment has on maintaining the integrity of the cellular protein pool. Overall, levels of Ub-conjugated proteins in cold-adapted Antarctic fishes were significantly higher than New Zealand fishes in gill, liver, heart and spleen tissues suggesting that life at sub-zero temperatures impacts protein homeostasis. The highest tissue levels of ubiquitinated proteins were found in the spleen of all fish. Ub conjugate levels in the New Zealand N. angustata, more closely resembled levels measured in other Antarctic fishes than levels measured in other New Zealand species, likely reflecting their recent shared ancestry with Antarctic notothenioids.  相似文献   

3.
Previous research on Antarctic notothenioids has demonstrated that cells of cold-adapted Antarctic notothenioids lack a common cellular defense mechanism called the heat shock response (HSR), the induction of a family of heat shock proteins (Hsps) in response to elevated temperatures. The goal of this study was to address how widespread the loss of the HSR is within the Notothenioidei suborder and, specifically, to ask whether cold temperate non-Antarctic notothenioids possess the HSR. In general, Antarctic fish have provided an important opportunity for physiologists to examine responses to selection in the environment and to ask whether traits of the notothenioids represent cold adaptation, or whether the traits are related to history and are characteristics of the notothenioid lineage. Using in vivo metabolic labeling, results indicate that one of the two New Zealand notothenioids possess an HSR. The thornfish, Bovichtus variegatus Richardson, 1846, expressed heat shock proteins (Hsp) in response to heat stress, whereas the black cod, Notothenia angustata Hutton, 1875, did not display robust stress-inducible Hsp synthesis at the protein-level. However, further analysis using Northern blotting clearly demonstrated that mRNA for a common Hsp gene, hsp70, was present in cells of both New Zealand species following exposure to elevated temperatures. Overall, combined evidence on the HSR in notothenioid fishes from temperate New Zealand waters indicate that the loss of the HSR in Antarctic notothenioid fishes occurred after the separation of Bovichtidae from the other Antarctic notothenioid families, and that the HSR was most likely lost during evolution at cold and constant environmental temperatures.  相似文献   

4.
5.
6.
Previous research on Antarctic notothenioid fishes demonstrated the loss of the heat-shock response characterized by the rapid synthesis of molecular chaperones in response to increasing pools of damaged proteins. We determined that this loss was the result of constitutive expression of the inducible hsp70 gene. In this study, we examined the extent of this unique expression pattern in Antarctic fish by comparing the expression of two genes, the constitutive hsc71 gene and the inducible hsp70 gene, in tissues from Trematomus bernacchii to expression in tissues of Pagothenia borchgrevinki, a second Antarctic notothenioid, and Lycodichthys dearborni, a phylogenetically distant Antarctic species. Our study indicated that the expression of hsc71 is similar in all species; however, the constitutive expression of the inducible hsp70 gene was also manifested in these species. These data further suggest that cold denaturation of proteins at ecologically relevant temperatures may be contributing to this change in expression of the hsp70 gene.  相似文献   

7.
During their many millions of years of evolution in the extreme and stable cold, Antarctic notothenioid fishes have acquired profoundly cold-adapted physiologies. Gene expression profiling via cDNA microarray was used to determine the extent to which one species of notothenioid, Trematomus bernacchii, has retained the ability to alter gene expression in response to heat stress. While an inability to up-regulate the expression of any size class of heat shock proteins (except for a 1.1-fold induction of the co-chaperone Hsp40) was observed, hundreds of additional genes, associated with a broad range of cellular processes, were responsive to heat. Many of these genes are associated with central aspects of the evolutionarily conserved cellular stress response (CSR), which plays a pivotal role in responding to physical and chemical stresses. The inability of T. bernacchii to mount a heat shock response underscores the potential susceptibility of this species to the effects of global warming.  相似文献   

8.
In fish, the determination of sex can be controlled by genetic factors, environmental factors or a combination of both. The presence of heteromorphic sex-related chromosomes is widely acknowledged as strongly indicative of genetic control of sex determination (GSD) acting over other sex control systems. Heteromorphic sex-related chromosomes have been observed in a minority of teleosts (approximately 4 %). However, when looking at the fishes of the suborder Notothenioidei the frequency of sex-related chromosomes increases substantially, reaching 26.67 % of the cytogenetically studied species. Noteworthy, sex chromosomes were observed only in cold-adapted species which live in the Antarctic coastal waters, whereas morphologically differentiated sex chromosomes were never observed in the temperate non-Antarctic notothenioid families. Recent evidence suggests that the sex-linked chromosomes across the Antarctic notothenioid families may not share a common origin, but likely originated more than once during notothenioid evolutionary history, thus implying the presence of selection pressures operating toward fixation of GSD system. On the whole, the cytogenetic evidences suggest the Antarctic-specific fixation of differentiated heteromorphic sex-related chromosomes and of a prominent GSD across Antarctic notothenioids that may be an additional manifestation of notothenioid evolution in thermally stable cold environment.  相似文献   

9.
Fishes of the perciform suborder Notothenioidei afford an excellent opportunity for studying the evolution and functional importance of diverse types of biochemical adaptation to temperature. Antarctic notothenioids have evolved numerous biochemical adaptations to stably cold waters, including antifreeze glycoproteins, which inhibit growth of ice crystals, and enzymatic proteins with cold-adapted specific activities (k(cat) values) and substrate binding abilities (K(m) values), which support metabolism at low temperatures. Antarctic notothenioids also exhibit the loss of certain biochemical traits that are ubiquitous in other fishes, including the heat-shock response (HSR) and, in members of the family Channichthyidae, hemoglobins and myoglobins. Tolerance of warm temperatures is also truncated in stenothermal Antarctic notothenioids. In contrast to Antarctic notothenioids, notothenioid species found in South American and New Zealand waters have biochemistries more reflective of cold-temperate environments. Some of the contemporary non-Antarctic notothenioids likely derive from ancestral species that evolved in the Antarctic and later "escaped" to lower latitude waters when the Antarctic Polar Front temporarily shifted northward during the late Miocene. Studies of cold-temperate notothenioids may enable the timing of critical events in the evolution of Antarctic notothenioids to be determined, notably the chronology of acquisition and amplification of antifreeze glycoprotein genes and the loss of the HSR. Genomic studies may reveal how the gene regulatory networks involved in acclimation to temperature differ between stenotherms like the Antarctic notothenioids and more eurythermal species like cold-temperate notothenioids. Comparative studies of Antarctic and cold-temperate notothenioids thus have high promise for revealing the mechanisms by which temperature-adaptive biochemical traits are acquired - or through which traits that cease to be of advantage under conditions of stable, near-freezing temperatures are lost - during evolution.  相似文献   

10.
Hepcidin is a small bioactive peptide with dual roles as an antimicrobial peptide and as the principal hormonal regulator of iron homeostasis in human and mouse. Hepcidin homologs of very similar structures are found in lower vertebrates, all comprise approximately 20-25 amino acids with 8 highly conserved cysteines forming 4 intramolecular disulfide bonds, giving hepcidin a hairpin structure. Hepcidins are particularly diverse in teleost fishes, which may be related to the diversity of aquatic environments with varying degree of pathogen challenge, oxygenation, and iron concentration, factors known to alter hepcidin expression in mammals. We characterized the diversity of hepcidin genes of the Antarctic notothenioid fishes that are endemic to the world's coldest and most oxygen-rich marine water. Notothenioid fishes have at least 4 hepcidin variants, in 2 distinctive structural types. Type I hepcidins comprise 3 distinct variants that are homologs of the widespread 8-cysteine hepcidins. Type II is a novel 4-cysteine variant and therefore only 2 possible disulfide bonds, highly expressed in hematopoietic tissues. Analyses of d(N)/d(S) substitution rate ratios and likelihood ratio test under site-specific models detected significant signal of positive Darwinian selection on the mature hepcidin-coding sequence, suggesting adaptive evolution of notothenioid hepcidins. Genomic polymerase chain reaction and Southern hybridization showed that the novel type II hepcidin occurs exclusively in lineages of the Antarctic notothenioid radiation but not in the basal non-Antarctic taxa, and lineage-specific positive selection was detected on the branch leading to the type II hepcidin clade under branch-site models, suggesting adaptive evolution of the reduced cysteine variant in response to the polar environment. We also isolated a structurally distinct 4-cysteine (4cys) hepcidin from an Antarctic eelpout that is unrelated to the notothenioids but inhabits the same freezing water. Neighbor-Joining (NJ) analyses of teleost hepcidins showed that the eelpout 4cys variant arose independently from the notothenioid version, which lends support to adaptive evolution of reduced cysteine hepcidin variants on cold selection. The NJ tree also showed taxonomic-specific expansions of hepcidin variants, indicating that duplication and diversification of hepcidin genes play important roles in evolutionary response to diverse ecological conditions.  相似文献   

11.
Although carbonic anhydrase is a ubiquitous enzyme involved in a variety of physiological processes, the information on its evolution and cold adaptation among Antarctic fish is still limited: the only Antarctic fish carbonic anhydrase characterized up-to-date is from Chionodraco hamatus, a member of the Channichthyidae family. In this work, we characterized orthologous genes within two other fish families: Nototheniidae (Trematomus eulepidotus, Trematomus lepidorhinus, Trematomus bernacchii) and Bathydraconidae (Cygnodraco mawsoni). The cDNAs of epithelial gill carbonic anhydrases were cloned and sequenced. Both coding and deduced amino acid sequences were used in phylogenetic analyses. The group of enzymes preferentially expressed in fish erythrocytes (CAIIb) represented the most conserved variant. This result suggests that, although the two variants derived from the same ancestor, CAIIc genes have a more complex evolutionary history than CAIIb. The peculiar distribution of Antarctic CAs among fish CAIIcs suggests that the CAIIc gene appeared at different times through independent duplication events, even after the speciation that led to the differentiation of Antarctic fish families. Using the new CA sequences, we built homology models to trace the expected consequences of sequence variability at the protein structure level. From these analyses, we inferred that sequence variability in Antarctic fish CAs affect important physicochemical properties of these proteins and consequentially influence their reactivity. Furthermore, we searched and tested the validity of various potential molecular trademarks for cold adaptation: significant features that can be related to cold adaptation in fish CAs include reduction of positively charged solvent accessible surfaces and an increased flexibility of N-terminal and C-terminal regions.  相似文献   

12.
The cold and constant water temperature of the Southern Ocean surrounding Antarctica provides a natural laboratory to address questions of temperature adaptation in marine organisms. In this study, endogenous levels and the number of isoforms of the 70 kDa heat shock protein multigene family (hsp70) of Antarctic and cold temperate notothenioid fishes were determined by SDS-polyacrylamide gel electrophoresis and Western blotting. Tissues from three Antarctic Trematomus congeners had significantly lower levels of 70 kDa Hsp isoforms than their temperate confamilial from New Zealand waters. However, these two thermally disparate sets of fish did not differ in number or pattern of 70 kDa Hsp isoforms expressed under normal physiological conditions. Additionally, levels of 70 kDa Hsp isoforms in specimens of one Antarctic species, Trematomus bernacchii, acclimated to 4 degrees C were significantly higher than non-acclimated conspecifics, indicating a direct effect of temperature on Hsp expression in this species. This study shows that constitutive expression of some members of the 70 kDa Hsp multigene family have been maintained, despite the absence of environmental heat stress for at least 2.5 million years.  相似文献   

13.
14.
di Prisco G  Eastman JT  Giordano D  Parisi E  Verde C 《Gene》2007,398(1-2):143-155
The recognition of the important role of the polar habitats in global climate changes has awakened great interest in the evolutionary biology of polar organisms. They are exposed to strong environmental constraints, and it is important to understand how they have adapted to cope with these challenges and to what extent adaptations may be upset by current climate changes. We present an introductory overview of the evolution of the Antarctic fish fauna with emphasis on the dominant perciform sub-order Notothenioidei, as well as some specific comments on the biogeography of the three phyletically basal notothenioid families. The wealth of information on the ecology and biodiversity of the species inhabiting high-Antarctic and sub-Antarctic regions provides a necessary framework for better understanding the origin, evolution and adaptation of this unique group of fish. Notothenioidei offer opportunities for identification of the biochemical characters or the physiological traits responsible for thermal adaptation. The availability of phylogenetically related taxa in a wide range of latitudes has allowed to look into the molecular bases of environmentally driven phenotypic gain and loss of function. In the process of cold adaptation, the evolutionary trend of notothenioids has produced unique specialisations, including modification of hematological characteristics, e.g. decreased amounts and multiplicity of hemoglobins. The Antarctic family Channichthyidae (the notothenioid crown group) is devoid of hemoglobin. This loss is related to a single deletional event removing all globin genes with the exception of the inactive 3' end of adult alpha-globin. In reviewing hemoglobin structure, function and phylogeny, the evolution of the fish Root effect is analysed in detail. Adaptation of the oxygen-transport system in notothenioids seems to be based on evolutionary changes involving levels of biological organisation higher than the structure of hemoglobin.  相似文献   

15.
16.
Expressed sequence tags (ESTs) from the Antarctic green algae Pyramimonas gelidicola were analyzed to obtain molecular information on cold acclimation of psychrophilic microorganisms. A total of 2,112 EST clones were sequenced, generating 222 contigs and 219 singletons, and 200 contigs and 391 singletons from control (4 degrees C) and cold-shock conditions (-2 degrees C), respectively. The complete EST sequences were deposited to the DDBJ EST database (http:// www.ddbj.nig.ac.jp/index-e.html) and the nucleotide sequences reported in this study are available in the DDBJ/EMBL/ GenBank. These EST databases of Antarctic green algae can be used in a wide range of studies on psychrophilic genes expressed by polar microorganisms.  相似文献   

17.
Organisms from yeast to mammals contain cysteine-rich, heavy metal binding proteins termed metallothioneins. The putative roles of these proteins are trace metal homeostasis and detoxification of poisonous heavy metals. The highly conserved chemical composition and the structural constraints led to the conclusion that metallothioneins of different origin must display remarkably similar features. The present review aims at surveying the studies carried out on the metallothioneins of Antarctic Notothenioidei, a dominating fish group endowed of a number of striking adaptive characters, including reduced (or absent) hematocrit and presence of antifreeze glycoproteins. Given the unique peculiarities of the Antarctic environment, a comparative study of the features of notothenioid metallothioneins could provide new insights into the role of these proteins in physiology and toxicology. The results summarized here show that the metallothioneins of this fish group display a number of features at the level of evolution, expression pattern, structure and function remarkably different from those of mammal metallothioneins.  相似文献   

18.
The adaptive radiation of the Antarctic notothenioid ancestral benthic fish stock within the chronic freezing waters of the Southern Ocean gave rise to five highly cold adapted families. Their stenothermy, first observed from several high-latitude McMurdo Sound species, has been of increasing recent interest given the threat of rising polar water temperatures from global climate change. In this study we determined the heat tolerance in a geographically diverse group of 11 Antarctic species as their critical thermal maximum (CTMax). When acclimatized to their natural freezing water temperatures, environmental CTMaxs ranged from 11.95 to 16.17 °C, well below those of fishes endemic to warmer waters. There was a significant regional split, with higher CTMaxs in species from the more northerly and thermally variable Seasonal Pack-ice Zone. When eight of the Antarctic species were warm acclimated to 4 °C all showed a significant increase over their environmental CTMaxs, with several showing plasticity comparable in magnitude to some far more eurythermal fishes. When the accrual of heat tolerance during acclimation was followed in three high-latitude McMurdo Sound species, it was found to develop slowly in two of them, which was correlated with their low metabolic rates.  相似文献   

19.
Notothenioids represent an adaptive radiation of teleost fishes in the frigid and ice-laden waters of the Southern Ocean surrounding Antarctica. Phylogenetic hypotheses for this clade have resulted primarily from analyses of mtDNA gene sequences, and studies utilizing nuclear gene DNA sequence data have focused on particular sub-clades of notothenioid fishes. In this study, we provide the first phylogenetic analysis of notothenioids using both mtDNA and nuclear gene sequences for a comprehensive sampling of all major lineages in the clade. Maximum parsimony and Bayesian analyses of aligned mtDNA genes, an aligned nuclear gene (S7 ribosomal protein intron 1), and combined dataset containing the mtDNA and nuclear genes resulted in phylogenies that contained the previously identified Antarctic and High Antarctic Clades. There were areas of agreement and disagreement between different datasets and methods of phylogenetic analysis, and the phylogenies resulting from the nuclear encoded S7 ribosomal protein intron 1 sequences were considerably less resolved than those inferred from mtDNA gene sequences. However, we anticipate increased resolution of the notothenioid phylogeny from future analyses that sample DNA sequences from several nuclear genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号