首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sought a convenient and reliable method for collection of genetic material that is inexpensive and noninvasive and suitable for self-collection and mailing and a compatible, commercial DNA extraction protocol to meet quantitative and qualitative requirements for high-throughput single nucleotide polymorphism (SNP) multiplex analysis on an automated platform. Buccal swabs were collected from 34 individuals as part of a pilot study to test commercially available buccal swabs and DNA extraction kits. DNA was quantified on a spectrofluorometer with Picogreen dsDNA prior to testing the DNA integrity with predesigned SNP multiplex assays. Based on the pilot study results, the Catch-All swabs and Isohelix buccal DNA isolation kit were selected for our high-throughput application and extended to a further 1140 samples as part of a large cohort study. The average DNA yield in the pilot study (n=34) was 1.94 μg ± 0.54 with a 94% genotyping pass rate. For the high-throughput application (n=1140), the average DNA yield was 2.44 μg ± 1.74 with a ≥93% genotyping pass rate. The Catch-All buccal swabs are a convenient and cost-effective alternative to blood sampling. Combined with the Isohelix buccal DNA isolation kit, they provided DNA of sufficient quantity and quality for high-throughput SNP multiplex analysis.  相似文献   

2.
ABSTRACT: BACKGROUND: The increasing trend for incorporation of biological sample collection within clinical trials requires sample collection procedures which are convenient and acceptable for both patients and clinicians. This study investigated the feasibility of using saliva-extracted DNA in comparison to blood-derived DNA, across two genotyping platforms: Applied Biosystems Taqman TM and Illumina Beadchip TM genome-wide arrays. METHOD: Patients were recruited from the Pharmacogenetics of Breast Cancer Chemotherapy (PGSNPS) study. Paired blood and saliva samples were collected from 79 study participants. The Oragene DNA Self-Collection kit (DNAgenotek(R)) was used to collect and extract DNA from saliva. DNA from EDTA blood samples (median volume 8 ml) was extracted by GenProbe, Livingstone, UK. DNA yields, standard measures of DNA quality, genotype call rates and genotype concordance between paired, duplicated samples were assessed. RESULTS: Total DNA yields were lower from saliva (mean 24 ug, range 0.2-52 ug) than from blood (mean 210 ug, range 58-577 ug) and a 2-fold difference remained after adjusting for the volume of biological material collected. Protein contamination and DNA fragmentation measures were greater in saliva DNA. 78/79 saliva samples yielded sufficient DNA for use on Illumina Beadchip arrays and using Taqman assays. Four samples were randomly selected for genotyping in duplicate on the Illumina Beadchip arrays. All samples were genotyped using Taqman assays. DNA quality, as assessed by genotype call rates and genotype concordance between matched pairs of DNA was high (>97%) for each measure in both blood and saliva-derived DNA. CONCLUSION: We conclude that DNA from saliva and blood samples is comparable when genotyping using either Taqman assays or genome-wide chip arrays. Saliva sampling has the potential to increase participant recruitment within clinical trials, as well as reducing the resources and organisation required for multicentre sample collection.  相似文献   

3.
The dog is an attractive model for genetic studies of complex disease. With drafts of the canine genome complete, a large number of single-nucleotide polymorphisms (SNPs) that are potentially useful for gene-mapping studies and empirical estimations of canine diversity and linkage disequilibrium (LD) are now available. Unfortunately, most canine SNPs remain uncharacterized, and the amount and quality of DNA available from population-based samples are limited. We assessed how these real-world challenges influence automated SNP genotyping methods such as Illumina's GoldenGate assay. We examined 384 SNPs on canine chromosome 9 and successfully genotyped a minimum of 217 and a maximum of 275 SNPs using buccal swab samples for 181 dogs (86 beagles, 76 border collies, and 15 Australian shepherds). Call rates per SNP and sample averaged 97%, with reproducibility within and between analyses averaging 98%. The majority of these SNPs were polymorphic across all 3 breeds. We observed extensive LD, albeit less than reported for surveys using fewer dogs, consistent between breeds. Analyses of population substructure indicated that beagles are distinct from border collies and Australian shepherds. These results demonstrate the suitability of amplified canine buccal samples for high-throughput multiplex genotyping and confirm extensive LD in the dog.  相似文献   

4.
We compared the accuracy of genotyping for DNA extracted from lymphocytes to that of DNA amplified from buccal epithelial cells. Amplification was via a rolling circle/phi29 DNA polymerase commercial kit. Paired buccal and lymphocyte DNA samples were available from 30 individuals. All samples were genotyped for 12 SNPs, 5 microsatellites and 2 VNTRs. The accuracy of genotyping (no-call proportions, reproducibility, and concordance) was similar for DNA from lymphocytes in comparison to amplified DNA from buccal samples. If used with caution, these data suggest that rolling-circle whole-genome amplification can be used to increase the DNA mass available for large-scale genotyping projects based on DNA from buccal cells.  相似文献   

5.
We report 22 new polymorphic microsatellites for the Ivory gull (Pagophila eburnea), and we describe how they can be efficiently co-amplified using multiplexed polymerase chain reactions. In addition, we report DNA concentration, amplification success, rates of genotyping errors and the number of genotyping repetitions required to obtain reliable data with three types of noninvasive or nondestructive samples: shed feathers collected in colonies, feathers plucked from living individuals and buccal swabs. In two populations from Greenland (n=21) and Russia (Severnaya Zemlya Archipelago, n=21), the number of alleles per locus varied between 2 and 17, and expected heterozygosity per population ranged from 0.18 to 0.92. Twenty of the markers conformed to Hardy-Weinberg and linkage equilibrium expectations. Most markers were easily amplified and highly reliable when analysed from buccal swabs and plucked feathers, showing that buccal swabbing is a very efficient approach allowing good quality DNA retrieval. Although DNA amplification success using single shed feathers was generally high, the genotypes obtained from this type of samples were prone to error and thus need to be amplified several times. The set of microsatellite markers described here together with multiplex amplification conditions and genotyping error rates will be useful for population genetic studies of the Ivory gull.  相似文献   

6.
We evaluated the cost-effectiveness of using buccal swab brushes in comparison with blood samples for obtaining DNA for large epidemiological studies of the elderly population. The data reported here are from the third phase of the Integral Study of Depression among the Elderly in Mexico City's Mexican Institute of Social Security, conducted in 2007. The total cost of the two procedures was determined. The measurement of effectiveness was the quality and quantity of DNA measured in ng/μL and the use of this DNA for the determination of apolipoprotein E (APO E) polymorphism by PCR. Similar rates of amplification were obtained with the two techniques. The cost of the buccal swab brushes, including sample collection and DNA extraction, was US$16.63, compared to the cost per blood sample of US$23.35. Using the buccal swab, the savings was US$6.72 per patient (P < 0.05). The effectiveness was similar. Quantity and quality of DNA obtained were similar for the oral and blood procedures, demonstrating that the swab brush technique offers a feasible alternative for large-scale epidemiological studies.  相似文献   

7.
BACKGROUND: Buccal cell collection is a convenient DNA collection method; however, little attention has been given to the quality of DNA obtained from pediatric populations. The purpose of this study was to determine the effect of a modified cytobrush collection method on the yield and quality of infant buccal DNA collected as part of a population-based case-control study of birth defects. METHODS Cytobrushes were collected from infants, mothers, and fathers using a standard collection method in 1997 to 2003 and a modified protocol that allows air-drying of the cytobrushes after collection from 2003 to the present. Yield and quality of DNA from 1057 cytobrushes was assessed by quantitative PCR and short tandem repeat (STR) genotyping, respectively. RESULTS Air-dried cytobrushes from infants had higher median DNA yields (1300 ng) and STR completion rates (99.5%) than standard collection method cytobrushes (60 ng and 59.5%, respectively). A subset of DNA aliquots was genotyped for six single nucleotide polymorphisms (SNPs). Aliquots from both collection methods that passed the quality protocol (DNA concentration >1 ng/μl, and successful amplification of ≥1 STR) had high genotype completion rates (99-100%). The median DNA yield following whole genome amplification was more than twofold higher for air-dried than standard collection specimens (p < 0.001). CONCLUSION Yield and quality of buccal DNA collected from infants are improved by using a method that incorporates air-drying; however, DNA collected by both methods is suitable for genotyping if stringent quality control procedures are instituted. These findings may be helpful for future epidemiologic studies of birth defects and other adverse pediatric outcomes.  相似文献   

8.
Incorporating historical tissues into the study of ecological, conservation and management questions can broaden the scope of population genetic research by enhancing our understanding of evolutionary processes and anthropogenic influences on natural populations. Genotyping historical and low-quality samples has been plagued by challenges associated with low amounts of template DNA and the potential for pre-existing DNA contamination among samples. We describe a two-step process designed to (i) accurately genotype large numbers of historical low-quality scale samples in a high-throughput format and (ii) screen samples for pre-existing DNA contamination. First, we describe how an efficient multiplex preamplification PCR of 45 single nucleotide polymorphisms (SNPs) can generate highly accurate genotypes with low failure and error rates in subsequent SNP genotyping reactions of individual historical scales from sockeye salmon (Oncorhynchus nerka). Second, we demonstrate how the method can be modified for the amplification of microsatellite loci to detect pre-existing DNA contamination. A total of 760 individual historical scale and 182 contemporary fin clip samples were genotyped and screened for contamination. Genotyping failure and error rates were exceedingly low and similar for both historical and contemporary samples. Pre-existing contamination in 21% of the historical samples was successfully identified by screening the amplified microsatellite loci. The advantages of automation, low failure and error rates, and ability to multiplex both the preamplification and subsequent genotyping reactions combine to make the protocol ideally suited for efficiently genotyping large numbers of potentially contaminated low-quality sources of DNA.  相似文献   

9.
While DNA of good quality and sufficient amount can be obtained easily from whole blood, buccal swabs, surgical specimens, or cell lines, these DNA-rich sources are not always available. This is particularly the case in studies for which biological specimens were collected when genotyping assays were not widely available. In those studies, serum or plasma is often the only source of DNA. Newly developed whole genome amplification (WGA) methods, based on phi29 polymerase, may play a significant role in recovering DNA in such instances. We tested a total of 528 plasma samples kept in storage at -40 degrees C for approximately 10 years for 8 single nucleotide polymorphisms (SNPs) using the 5' exonuclease (TaqMan) assay. These specimens yielded undetectable levels of DNA following extraction with an affinity column but produced an average 52.7 microg (standard deviation of 31.2 microg) of DNA when column-extracted DNA was used as a template for WGA. This increased the genotyping success rate from 54% to 93%. There were only 3 disagreements out of 364 paired genotyping results for pre- and post-WGA DNAs, indicating an error rate of 0.82%. These results are encouraging for expanding the use of poor DNA resources in genotyping studies.  相似文献   

10.
Hereditary inclusion body myopathy/distal myopathy with rimmed vacuoles is an adult onset autosomal recessive muscle-wasting disease common in people of Iranian-Jewish descent, due to the founder allelic variant GNE:p.M712T. High correlation of disease susceptibility with GNE:p.M712T allows its use as a molecular marker for diagnosis. In this study, we applied and validated the use of melting curve analysis using SimpleProbe technology for detection of this mutation using specimens obtained by mouthwash, buccal swab, and whole blood. The assay was then applied to 43 clinical specimens, and results were validated by additional methods. A probe spanning this mutation in exon 12 accurately discerns two Tm corresponding to its hybridization to wild-type and M712T-derived amplicons. A 10 degrees C divergence in Tm allowed rapid single-tube genotyping of reference and patient samples with 100% accuracy. Distal myopathy constitutes a large heterogeneous group of pathologies with similar physiological manifestations and little molecular markers for distinguishing subtypes. Application of SimpleProbes for detection of GNE:p.M712T on genomic DNA obtained from buccal epithelial cells allows accurate, rapid, and cost-effective identification of this allele in individuals at risk. This procedure is amenable to automated high-throughput applications and can be extended to both clinical and research applications.  相似文献   

11.
Non-invasive DNA sampling is an important tool in amphibian conservation. Buccal swabs are nowadays replacing the wounding toe-clipping method. Skin and cloaca swabbing are even less invasive and easier to handle than buccal swabbing, but could result in contaminations of genetic material. Therefore, we test if external skin and cloaca swabs are as reliable as buccal swabs for genetic analysis of amphibians. We analysed eight microsatellite loci for the common frog (Rana temporaria, Linnaeus 1758) and compared genotyping results for buccal, skin and cloaca swabs regarding allelic dropouts and false alleles. Furthermore, we compared two DNA extraction methods regarding efficiency and cost. DNA quality and quantity (amplification success, genotyping error rate, in nanogram per microlitre) were comparable among DNA sources and extraction methods. However, skin and cloaca samples exhibited high degrees of contamination with foreign individuals, which was due to sample collection during mating season. Here, we established a simple low budget procedure to receive DNA of amphibians avoiding stressful buccal swabbing or harmful toe clipping. However, the possibility of contaminations of external swabs has to be considered.  相似文献   

12.
Breeding exploits novel allelic combinations assured by meiotic recombination. Barley (Hordeum vulgare) single pollen nucleus genotyping enables measurement of meiotic recombination rates in gametes before fertilization without the need for segregating populations. However, so far, established methods rely on whole-genome amplification of every single pollen nucleus due to their limited DNA content, thus restricting the number of analyzed samples. In this study, high-throughput measurements of meiotic recombination rates in barley pollen nuclei without whole-genome amplification were performed through a Crystal Digital PCRTM-based genotyping assay. Meiotic recombination rates within two centromeric and two distal chromosomal intervals were measured in hybrid plants by genotyping a total of >42 000 individual pollen nuclei (up to 4900 nuclei analyzed per plant). Determined recombination frequencies in pollen nuclei were similar to frequencies in segregating populations. We improved the efficiency of the genotyping by pretreating the pollen nuclei with a thermostable restriction enzyme. Additional opportunities for a higher sample throughput and a further increase of the genotyping efficiency are presented and discussed. Taken together, single barley pollen nucleus genotyping based on Crystal Digital PCRTM enables reliable, rapid and high-throughput meiotic recombination measurements within defined chromosomal intervals of intraspecific hybrid plants. The successful encapsulation of nuclei from a range of species with different nuclear and genome sizes suggests that the proposed method is broadly applicable to genotyping single nuclei.  相似文献   

13.
Single-nucleotide polymorphisms (SNPs) are considered useful polymorphic markers for genetic studies of polygenic traits. A new practical approach to high-throughput genotyping of SNPs in a large number of individuals is needed in association study and other studies on relationships between genes and diseases. We have developed an accurate and high-throughput method for determining the allele frequencies by pooling the DNA samples and applying a DNA microarray hybridization analysis. In this method, the combination of the microarray, DNA pooling, probe pair hybridization, and fluorescent ratio analysis solves the dual problems of parallel multiple sample analysis, and parallel multiplex SNP genotyping for association study. Multiple DNA samples are immobilized on a slide and a single hybridization is performed with a pool of allele-specific oligonucleotide probes. The results of this study show that hybridization of microarray from pooled DNA samples can accurately obtain estimates of absolute allele frequencies in a sample pool. This method can also be used to identify differences in allele frequencies in distinct populations. It is amenable to automation and is suitable for immediate utilization for high-throughput genotyping of SNP.  相似文献   

14.
Molecular and genetic studies of canine disease phenotypes can be limited by the amount of DNA available for analysis. New methods have been developed to amplify the genomic DNA of a species producing large quantities of DNA from small starting amounts. Whole genome amplification (WGA) of DNA is now being used in human studies, although this technique has not been applied extensively in veterinary research. We evaluated WGA of canine DNA for suitability in a range of molecular tests. DNA from 93 canine blood extracted and 18 buccal swab samples was subjected to WGA using the GenomiPhi kit (Amersham). Genomic DNA was compared with WGA product using a range of techniques, including reference strand-mediated conformation analysis, denaturing high-performance liquid chromatography analysis, microsatellite genotyping, direct DNA sequencing, and single nucleotide polymorphism allelic discrimination. All samples amplified well, giving an average yield of 3 mug of DNA from 2.5 ng of starting material. Extremely high levels of experimental reproducibility and concordance were observed between source and WGA DNA samples for all analyses used: greater than 95% for blood extracted DNA and greater than 80% for buccal swab DNA. These studies clearly demonstrate the usefulness of WGA of canine DNA as a means of increasing DNA quantities for canine studies. This technique will have major implications for future veterinary research.  相似文献   

15.
Buccal cells are increasingly used as a source of quality DNA to improve participation rates in molecular studies. Here, three buccal cell collection protocols were compared to determine factors affecting the yield of cells, total DNA per sample, and DNA yield per cell. In addition, kinetic quantitative polymerase chain reaction (PCR) (TaqMan™) was used to quantify human DNA available for PCR. The method of collection used influenced the overall DNA yield per sample. The collection buffer used influenced the number of cells but not the overall DNA yield per sample. Repeated freezing and thawing did not affect overall DNA yield per sample, DNA yield per cell, or the total number of cells collected. Mouthwashes had the highest DNA yield per sample (20.8 µg) compared with cytobrush samples (1.9 µg from three cytobrushes) and tongue depressors (0.8 µg from three tongue depressors). However, mouthwash samples may contain significant non-human DNA and other contaminants that could interfere with some molecular studies. Spectrometry grossly overestimated the total DNA recovered from mouthwash samples compared with fluorometry or quantitative PCR.  相似文献   

16.
With the recent expansion of DNA database laws in many states, there is a critical need for the rapid and simple collection of DNA samples and streamlined processing for downstream applications. The Buccal DNA Collector was developed to address the need for a reliable, practical alternative to blood collection that is compatible with high-throughput operations. The collection area consists of filter paper that is placed against the inside of the cheek, and the sample is taken by swiping the cheek several times while pulling the device out of the mouth. Using this method, DNA profiles have been obtained from samples stored for 2 years at room temperature. Cells are collected on all regions of the filter paper with the maximum DNA recovery from the tip. The processing of DNA for DNA typing is accomplished with BodeElute, a new product that prepares DNA for amplification in a single 30-min heating step. Extracted DNA samples were successfully amplified with four commonly used multiplex short tandem repeat (STR) amplification kits. These products provide simplified approaches for collecting and processing buccal cell samples.  相似文献   

17.
Buccal cells are increasingly used as a source of quality DNA to improve participation rates in molecular studies. Here, three buccal cell collection protocols were compared to determine factors affecting the yield of cells, total DNA per sample, and DNA yield per cell. In addition, kinetic quantitative polymerase chain reaction (PCR) (TaqMan?) was used to quantify human DNA available for PCR. The method of collection used influenced the overall DNA yield per sample. The collection buffer used influenced the number of cells but not the overall DNA yield per sample. Repeated freezing and thawing did not affect overall DNA yield per sample, DNA yield per cell, or the total number of cells collected. Mouthwashes had the highest DNA yield per sample (20.8 μg) compared with cytobrush samples (1.9 μg from three cytobrushes) and tongue depressors (0.8 μg from three tongue depressors). However, mouthwash samples may contain significant non-human DNA and other contaminants that could interfere with some molecular studies. Spectrometry grossly overestimated the total DNA recovered from mouthwash samples compared with fluorometry or quantitative PCR.  相似文献   

18.
Recent advances in nanofluidic technologies have enabled the use of Integrated Fluidic Circuits (IFCs) for high-throughput Single Nucleotide Polymorphism (SNP) genotyping (GT). In this study, we implemented and validated a relatively low cost nanofluidic system for SNP-GT with and without Specific Target Amplification (STA). As proof of principle, we first validated the effect of input DNA copy number on genotype call rate using well characterised, digital PCR (dPCR) quantified human genomic DNA samples and then implemented the validated method to genotype 45 SNPs in the humpback whale, Megaptera novaeangliae, nuclear genome. When STA was not incorporated, for a homozygous human DNA sample, reaction chambers containing, on average 9 to 97 copies, showed 100% call rate and accuracy. Below 9 copies, the call rate decreased, and at one copy it was 40%. For a heterozygous human DNA sample, the call rate decreased from 100% to 21% when predicted copies per reaction chamber decreased from 38 copies to one copy. The tightness of genotype clusters on a scatter plot also decreased. In contrast, when the same samples were subjected to STA prior to genotyping a call rate and a call accuracy of 100% were achieved. Our results demonstrate that low input DNA copy number affects the quality of data generated, in particular for a heterozygous sample. Similar to human genomic DNA, a call rate and a call accuracy of 100% was achieved with whale genomic DNA samples following multiplex STA using either 15 or 45 SNP-GT assays. These calls were 100% concordant with their true genotypes determined by an independent method, suggesting that the nanofluidic system is a reliable platform for executing call rates with high accuracy and concordance in genomic sequences derived from biological tissue.  相似文献   

19.

Background

Sustainable DNA resources and reliable high-throughput genotyping methods are required for large-scale, long-term genetic association studies. In the genetic dissection of common disease it is now recognised that thousands of samples and hundreds of thousands of markers, mostly single nucleotide polymorphisms (SNPs), will have to be analysed. In order to achieve these aims, both an ability to boost quantities of archived DNA and to genotype at low costs are highly desirable. We have investigated Φ29 polymerase Multiple Displacement Amplification (MDA)-generated DNA product (MDA product), in combination with highly multiplexed BeadArray? genotyping technology. As part of a large-scale BeadArray genotyping experiment we made a direct comparison of genotyping data generated from MDA product with that from genomic DNA (gDNA) templates.

Results

Eighty-six MDA product and the corresponding 86 gDNA samples were genotyped at 345 SNPs and a concordance rate of 98.8% was achieved. The BeadArray sample exclusion rate, blind to sample type, was 10.5% for MDA product compared to 5.8% for gDNA.

Conclusions

We conclude that the BeadArray technology successfully produces high quality genotyping data from MDA product. The combination of these technologies improves the feasibility and efficiency of mapping common disease susceptibility genes despite limited stocks of gDNA samples.  相似文献   

20.
Abstract Noninvasive DNA sampling allows studies of natural populations without disturbing the target animals. Unfortunately, high genotyping error rates often make noninvasive studies difficult. We report low error rates (0.0–7.5%/locus) when genotyping 18 microsatellite loci in only 4 multiplex polymerase chain reaction amplifications using fecal DNA from bighorn sheep (Ovis canadensis). The average locus-specific error rates varied significantly between the 2 populations (0.13% vs. 1.6%; P < 0.001), as did multi-locus genotype error rates (2.3% vs. 14.1%; P < 0.007). This illustrates the importance of quantifying error rates in each study population (and for each season and sample preservation method) before initiating a noninvasive study. Our error rates are among the lowest reported for fecal samples collected noninvasively in the field. This and other recent studies suggest that noninvasive fecal samples can be used in species with pellet-form feces for nearly any study (e.g., of population structure, gene flow, dispersal, parentage, and even genome-wide studies to detect local adaptation) that previously required high-quality blood or tissue samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号