首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human monoacylglycerol lipase (MGL) catalyzes the hydrolysis of 2-arachidonoylglycerol to arachidonic and glycerol, which plays a pivotal role in the normal biological processes of brain. Co-crystal structure of the MGL in complex with its inhibitor, compound 1, shows that the helix α4 undergoes large-scale conformational changes in response to the compound 1 binding compared to the apo MGL. However, the detailed conformational transition pathway of the helix α4 in the inhibitor binding process of MGL has remained unclear. Here, conventional molecular dynamics (MD) and nudged elastic band (NEB) simulations were performed to explore the conformational transition pathway of the helix α4. Conventional MD simulations unveiled that the compound 1 induced the closed conformation of the active site of MGL, reduced the conformational flexibility of the helix α4, and elicited the large-scale conformational rearrangement of the helix α4, leading to the complete folding of the helix α4. Moreover, NEB simulations revealed that the conformational transition pathway of helix α4 underwent an almost 180° counter-clockwise rotation of the helix α4. Our computational results advance the structural and mechanistic understanding of the inhibitory mechanism.  相似文献   

2.
NalP is an autotransporter secretory protein found in the outer membrane of Neisseria meningitidis. The crystal structure of the NalP translocator domain revealed a transmembrane β-barrel containing a central α-helix. The role of this α-helix, and of the conformational dynamics of the β-barrel pore have been studied via atomistic molecular dynamics simulations. Three simulations, each of 10 ns duration, of NalP embedded within a solvated DMPC bilayer were performed. The helix was removed from the barrel interior in one simulation. The conformational stability of the protein is similar to that of other outer membrane proteins, e.g., OmpA, in comparable simulations. The transmembrane β-barrel is stable even in the absence of the α-helix. Removal of the helix results in an influx of water into the pore region, suggesting the helix acts as a ‘plug’. Water molecules entering the resultant pore form hydrogen bonds with the barrel lining that compensate for the loss of helix-barrel hydrogen bonds. The dimensions of the pore fluctuate over the course of the simulation revealing it to be flexible, but only wide enough to allow transport of the passenger domain in an unfolded or extended conformation. The simulations help us to understand the role of the central helix in plugging the pore and in maintaining the width of the barrel, and show that the NalP monomer is sufficient for the transport of the passenger domain in an unfolded or extended conformation.  相似文献   

3.
Recent crystallography studies have shown that the binding site oxyanion hole plays an important role in inhibitor binding, but can exist in two conformations (active/inactive). We have undertaken molecular dynamics (MD) calculations to better understand oxyanion hole dynamics and thermodynamics. We find that the Zika virus (ZIKV) NS2B/NS3 protease maintains a stable closed conformation over multiple 100-ns conventional MD simulations in both the presence and absence of inhibitors. The S1, S2, and S3 pockets are stable as well. However, in two of eight simulations, the A132-G133 peptide bond in the binding pocket of S1' spontaneously flips to form a 310-helix that corresponds to the inactive conformation of the oxyanion hole, and then maintains this conformation until the end of the 100-ns conventional MD simulations without inversion of the flip. This conformational change affects the S1' pocket in ZIKV NS2B/NS3 protease active site, which is important for small molecule binding. The simulation results provide evidence at the atomic level that the inactive conformation of the oxyanion hole is more favored energetically when no specific interactions are formed between substrate/inhibitor and oxyanion hole residues. Interestingly, however, transition between the active and inactive conformation of the oxyanion hole can be observed by boosting the valley potential in accelerated MD simulations. This supports a proposed induced-fit mechanism of ZIKV NS2B/NS3 protease from computational methods and provides useful direction to enhance inhibitor binding predictions in structure-based drug design.  相似文献   

4.
Ligand‐regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug‐drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely “expanded” and “contracted”, in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single “ligand‐adaptable” conformational state. Ensemble‐based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named “α8 pocket”, whose opening‐closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure‐based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a “tightly‐contracted” conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.  相似文献   

5.
Yuko Okamoto 《Biopolymers》1994,34(4):529-539
Monte Carlo simulated annealing is applied to the tertiary structure prediction of a 17-residue synthetic peptide, which is known by experiment to exhibit high helical content at low pH. Two dielectric models are considered: sigmoidal distance-dependent dielectric function and a constant dielectric function (? = 2). Starting from completely random initial conformations, our simulations for both dielectric models at low pH gave many helical conformations. The obtained low-energy conformations are compared with the nuclear Overhauser effect spectroscopy cross-peak data for both main chain and side chains, and it is shown that the results for the sigmoidal dielectric function are in remarkable agreement with the experimental data. The results predict the existence of two disjoint helices around residues 5–9 and 11–16, while nmr experiments imply significant α-helix content between residues 5 and 14. Simulations with high pH, on the other hand, hardly gave a helical conformation, which is also in accord with the experiment. These findings indicate that when side chains are charged, electrostatic interactions due to these charges play a major role in the helix stability. Our results are compared with the previous 500 ps molecular dynamics simulations of the same peptide. It is argued that simulated annealing is superior to molecular dynamics in two respects: (1) direct folding of α-helix from completely random initial conformations is possible for the former, whereas only unfolding of an α-helix can be studied by the latter; (2) while both methods predict high helix content for low pH, the results for high pH agree with experiment (low helix content) only for the former method. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The C-terminus of Protein Tyrosine Phosphatase 1B (PTP1B) includes an α-helix α7), which forms an allosteric binding site 20 ? away from the active site. This helix is specific to PTP1B and its truncation decreases the catalytic activity significantly. Here, molecular dynamics (MD) simulations in the presence and absence of α7 were performed to investigate the role played by α7. The highly mobile α7 was found to maintain its contacts with loop 11 (L11)α3 helix throughout the simulations. The interactions of Tyr152 on L11, Tyr176, Thr177 on the catalytically important WPD loop and Ser190 on α3 are important for the conformational stability and the concerted motions of the regions surrounding the WPD loop. In the absence of α7, L11 and WPD loop move away from their crystal structure conformations, resulting in the loss of the interactions in this region, and a decrease in the residue displacement correlations in the vicinity of WPD loop. Therefore, we suggest that one of the functionally important roles of α7 may be to limit the L11 and α3 motions, and, facilitate the WPD loop motions. Truncation of α7 in PTP1B is found to affect distant regions as well, such as the substrate recognition site and the phosphate binding-loop (P-loop), changing the conformations of these regions significantly. Our results show that the PTP1B specific α7 is important for the conformation and dynamics of the WPD loop, and also may play a role in ligand binding.  相似文献   

7.
The structural and thermodynamics characters of α-syn12 (residues 1-12 of the human α-synuclein protein) peptide in aqueous solution were investigated through temperature replica-exchange molecular dynamics (T-REMD) simulations with the GROMOS 43A1 force field. The two independent T-REMD simulations were completed starting from an initial conformational α-helix and an irregular structure, respectively. Each replica was run for 300 ns. The structural and thermodynamics characters were studied based on parameters such as distributions of backbone dihedral angles, free energy surface, stability of folded β-hairpin structure, and favorite conformations. The results showed that the isolated α-syn12 peptide in water adopted four different conformational states: the first state was a β-hairpin ensemble with Turn(9-6) and four hydrogen bonds, the second state was a β-hairpin ensemble with two turns (Turn(9-6) and Turn(5-2)) and three hydrogen bonds, the third state was a disordered structure with both Turn(8-5) and Turn(5-2), and the last state was a π-helix ensemble. Meanwhile, we studied the free energy change of α-syn12 peptide from the unfolded state to the β-hairpin state, which was in good agreement with the experiments and molecular dynamics simulations for some other peptides. We also analyzed the driving force of the peptide transition. The results indicated that the driving forces were high solvent exposure of hydrophobic Leu8 and hydrophobic residues in secondary structure. To our knowledge, this was the first report to study the isolated α-syn12 peptide in water by T-REMD.  相似文献   

8.
Proline-induced constraints in alpha-helices   总被引:9,自引:0,他引:9  
L Piela  G Némethy  H A Scheraga 《Biopolymers》1987,26(9):1587-1600
The disrupting effect of a prolyl residue on an α-helix has been analyzed by means of conformational energy computations. In the preferred, nearly α-helical conformations of Ac-Ala4-Pro-NHMe and of Ac-Ala7-Pro-Ala7-NHMe, only the residue preceding Pro is not α-helical, while all other residues can occur in the α-helical A conformation; i.e., it is sufficient to introduce a conformational change of only one residue in order to accommodate proline in a distorted α-helix. Other low-energy conformations exist in which the conformational state of three residues preceding proline is altered considerably; on the other hand, another conformation in which these three residues retain the near-α-helical A-conformational state (with up to 26° changes of their dihedral angles ? and ψ, and a 48° change in one ω from those of the ideal α-helix) has a considerably higher energy. These conclusions are not altered by the substitution of other residues in the place of the Ala preceding Pro. The conformations of the peptide chain next to prolyl residues in or near an α-helix have been analyzed in 58 proteins of known structure, based on published atomic coordinates. Of 331 α-helices, 61 have a Pro at or next to their N-terminus, 21 have a Pro next to their C-terminus, and 30 contain a Pro inside the helix. Of the latter, 16 correspond to a break in the helix, 9 are located inside distorted first turns of the helix, and 5 are parts of irregular helices. Thus, the reported occurrence of prolyl residues next to or inside observed α-helices in proteins is consistent with the computed steric and energetic requirements of prolyl peptides.  相似文献   

9.
G-protein hetero-trimers play a fundamental role in cell function. Their dynamic behavior at the atomic level remains to be understood. We have studied the Gi hetero-trimer through a combination of molecular dynamics simulations and normal mode analyses. We showed that these big proteins could undergo large-amplitude conformational changes, without any energy penalty and with an intrinsic dynamics centered on their GDP binding pocket. Among the computed collective motions, one of the modes (mode 17) was particularly able to significantly open both the base and the phosphate sides of the GDP binding pocket. This mode describing mainly a motion between the Ras-like and the helical domains of Gα was in close agreement with some available X-ray data and with many other biochemical/biophysical observations including the kink of helix α5. The use of a new protocol, which allows extraction of the GDP ligand along the computed normal modes, supported that the exit of GDP was largely coupled to an opening motion along mode 17. We propose for the first time a “concerted mechanism” model in which the opening of the GDP pocket and the kink of the α5 helix occur concomitantly and favor GDP release from Gαβγ complexes. This model is discussed in the context of the G-protein-coupled receptor/G-protein interaction close to the cell membrane.  相似文献   

10.
Disrupting the interaction between the p53 tumor suppressor and its regulator MDM2 is a promising therapeutic strategy in anticancer drug research. In our search for non peptide inhibitors of this protein-protein interaction, we have devised a ligand design concept exploiting the central position of Val 93 in the p53 binding pocket of MDM2. The design of molecules based on this concept has allowed us to rapidly identify compounds having a 3-imidazolyl indole core structure as the first representatives of a new class of potent inhibitors of the p53-MDM2 interaction.  相似文献   

11.
R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all‐atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53‐DBD conformation: (i) wild‐type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side‐chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge‐ and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc‐binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. Proteins 2015; 83:2240–2250. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Abstract

The C-terminus of Protein Tyrosine Phosphatase 1B (PTP1B) includes an α-helix (α7), which forms an allosteric binding site 20 Å away from the active site. This helix is specific to PTP1B and its truncation decreases the catalytic activity significantly. Here, molecular dynamics (MD) simulations in the presence and absence of α7 were performed to investigate the role played by α7. The highly mobile α7 was found to maintain its contacts with loop 11 (L11)- α3 helix throughout the simulations. The interactions of Tyr152 on L11, Tyr176, Thr177 on the catalytically important WPD loop and Ser190 on α3 are important for the conformational stability and the concerted motions of the regions surrounding the WPD loop. In the absence of α7, L11 and WPD loop move away from their crystal structure conformations, resulting in the loss of the interactions in this region, and a decrease in the residue displacement correlations in the vicinity of WPD loop. Therefore, we suggest that one of the functionally important roles of α7 may be to limit the L11 and α3 motions, and, facilitate the WPD loop motions. Truncation of α7 in PTP1B is found to affect distant regions as well, such as the substrate recognition site and the phosphate binding-loop (P-loop), changing the conformations of these regions significantly. Our results show that the PTP1B specific α7 is important for the conformation and dynamics of the WPD loop, and also may play a role in ligand binding.  相似文献   

13.
Zhong H  Carlson HA 《Proteins》2005,58(1):222-234
The interaction between human p53 and MDM2 is a key event in controlling cell growth. Many studies have suggested that a p53 mimic would be sufficient to inhibit MDM2 to reduce cell growth in cancerous tissue. In order to design a potent p53 mimic, molecular dynamics (MD) simulations were used to examine the binding interface and the effect of mutating key residues in the human p53-MDM2 complex. The Generalized Born surface area (GBSA) method was used to estimate free energies of binding, and a computational alanine-scanning approach was used to calculate the relative effects in the free energy of binding for key mutations. Our calculations determine the free energy of binding for a model p53-MDM2 complex to be -7.4 kcal/mol, which is in very good agreement with the experimentally determined values (-6.6--8.8 kcal/mol). The alanine-scanning results are in good agreement with experimental data and calculations by other groups. We have used the information from our studies of human p53-MDM2 to design a beta-peptide mimic of p53. MD simulations of the mimic bound to MDM2 estimate a free energy of binding of -8.8 kcal/mol. We have also applied alanine scanning to the mimic-MDM2 complex and reveal which mutations are most likely to alter the binding affinity, possibly giving rise to escape mutants. The mimic was compared to nutlins, a new class of inhibitors that block the formation of the p53-MDM2 complex. There are interesting similarities between the nutlins and our mimic, and the differences point to ways that both inhibitors may be improved. Finally, an additional hydrophobic pocket is noted in the interior of MDM2. It may be possible to design new inhibitors to take advantage of that pocket.  相似文献   

14.
The N-terminal domain of MDM4 binds to the N-terminal transactivation domain of the tumor suppressor p53 and is an important negative regulator of its transactivation activity. As such, inhibition of the binding of MDM4 to p53 is a target for anticancer therapy. The protein has not been crystallized satisfactorily for structural studies without the addition of an N-terminal p53 peptide. We selected a single-domain antibody (VH9) that bound to the human domain with a dissociation constant of 44 nM. We solved the structure of the complex at 2.0-Å resolution. The asymmetric unit contained eight molecules of VH9 and four molecules of MDM4. A molecule of VH9 was located in each transactivation domain binding site, and the four non-MDM4-bound VH9 domains provided additional crystal contacts. There are differences between the structures of human MDM4 domain bound to VH9 and those of human and zebra fish MDM4 bound to a p53 peptide. Molecular dynamics simulations showed that the binding pocket in the three MDM4 structures converged to a common conformation after removal of the ligands, indicating that the differences are due to induced fit. The largest conformational changes were for the MDM4 molecules bound to p53. The simulated and observed structures should aid rational drug design. The use of single-domain antibodies to aid crystallization by creating a molecular scaffold may have a wider range of applications.  相似文献   

15.
B Mao 《Biophysical journal》1991,60(4):966-973
The mass-weighted molecular dynamics simulation method was developed previously for sampling the multidimensional conformational space of linear and cyclic polypeptides and studying their conformational flexibility. Herein results from molecular dynamics simulations of the protein-ligand complex of the aspartyl protease rhizopuspepsin and a polypeptide inhibitor are reported. The dihedral conformational space sampling for the linear peptide inhibitor in situ was found to be increased in the mass-weighted simulation as in other molecular systems previously studied. More significantly, the physical space of the enzyme binding pocket was also sampled efficiently in the simulations and multiple binding sites were identified for the inhibitor. These results suggest that it may be possible now to study, by computer simulations, the putative initial enzyme-inhibitor complex suggested experimentally from the time-dependent kinetics of enzyme inhibition by slow-binding inhibitors (Morrison, J. F., and C. T. Walsh. 1988. Adv. Enzymol. 61:201), and/or conformational substates in protein-ligand complexes suggested in the study of reassociation dynamics of myoglobin and carbon monoxide following photolysis (Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. 1975. Biochemistry. 14:5355). Moreover, the intermediate binding steps and the molecular flexibility of the inhibitor shown in the MWMD simulation may have crucial roles in the ligand binding process.  相似文献   

16.
The p38 MAP kinase plays a crucial role in regulating the production of proinflammatory cytokines, such as tumor necrosis factor and interleukin-1. Blocking this kinase may offer an effective therapy for treating many inflammatory diseases. Here we report a new allosteric binding site for a diaryl urea class of highly potent and selective inhibitors against human p38 MAP kinase. The formation of this binding site requires a large conformational change not observed previously for any of the protein Ser/Thr kinases. This change is in the highly conserved Asp-Phe-Gly motif within the active site of the kinase. Solution studies demonstrate that this class of compounds has slow binding kinetics, consistent with the requirement for conformational change. Improving interactions in this allosteric pocket, as well as establishing binding interactions in the ATP pocket, enhanced the affinity of the inhibitors by 12,000-fold. One of the most potent compounds in this series, BIRB 796, has picomolar affinity for the kinase and low nanomolar inhibitory activity in cell culture.  相似文献   

17.
By means of conformational energy calculations, we previously showed that the antigenic strength of a series of oligopeptides (derived from the carboxyl terminal sequence of cytochrome c) in a T-lymphocyte proliferation assay depends on their ability to adopt the α-helix conformation. Using experimentally determined statistical weights (within the framework of the Zimm–Bragg theory for the helix–coil transition), here we present a simple free energy analysis of the ability of these peptides to adopt the α-helix conformation in water. The experimental statistical weights have been modified to include the effect of long-range charge–dipole interactions on helix stability. We find that there is a close correlation between the tendency of a peptide to adopt the α-helix conformation and its ability to stimulate antigen-primed T cells. The shortest peptide with a tendency to adopt the α-helix conformation is also the shortest one that exhibits antigenic activity. The rapid and simple method presented here can thus be used to predict relative antigenicities for different peptides derived from cytochrome c.  相似文献   

18.
The oncoprotein Mdm2, and the recently intensely studied, homologues protein Mdmx, are principal negative regulators of the p53 tumor uppressor. The mechanisms by which they regulate the stability and activity of p53 are not fully established. We have determined the crystal structure of the N-terminal domain of Mdmx bound to a 15-residue p53 peptide. The structure reveals that although the principle features of the Mdm2-p53 interaction are preserved in the Mdmx-p53 complex, the Mdmx hydrophobic cleft on which the p53 peptide binds is significantly altered: a part of the cleft is blocked by sidechains of Met and Tyr of the p53-binding pocket of Mdmx. Thus specific inhibitors of Mdm2-p53 would not be optimal for binding to Mdmx. Our binding assays show indeed that nutlins, the newly discovered, potent antagonists of the Mdm2-p53 interaction, are notcapable to efficiently disrupt the Mdmx-p53 interaction. To achieve full activation of p53 in tumor cells, compounds that are specific for Mdmx are necessary to complement the Mdm2 specific binders.  相似文献   

19.
The observation that short, linear alanine-based polypeptides form stable α-helices in aqueous solution has allowed the development of well-defined experimental systems with which to study the influence of amino acid sequence upon the stability of secondary structure. We have performed detailed conformational searches upon six alanine-based peptides in order to rationalize the observed variation in the α-helical stability in terms of side-chain-backbone and side-chain-side-chain interactions. Although a simple, gas-phase, potential model was used to obtain the conformational energies for these peptides, good agreement was obtained with experiment regarding their relative α-helical stabilities. Our calculations clearly indicate that valine, isoleucine, and phenylalanine residues should destabilize the α-helical conformation when included within alanine-based peptides because of energetically unfavorable side-chain-backbone interactions, which tend to result in the formation of regions of 310-helix. In the case of valine, the destabilization most probably arises from entropic effects as the isopropyl side chain can assume more orientations in the 310-helical form of the peptide. A detailed examination of very short-range interactions in these peptides has also indicated that an interaction, involving fewer than five consecutive residues, whose stabilizing effect reinforces that of the (i, i + 4) hydrogen bond may be the basis of the requirement for increased nucleation (σ) and propagation parameters (s) required by Zimm–Bragg theory to predict the α-helical content for compounds in this class of short peptides. Our calculations complement recent work using modified Zimm–Bragg and Lifson–Roig theories of the helix–coil transition, and are consistent with molecular dynamics simulations upon linear peptides in aqueous solution. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Woo HJ 《Biophysical chemistry》2007,125(1):127-137
Muscle contractions are driven by cyclic conformational changes of myosin, whose molecular mechanisms of operation are being elucidated by recent advances in crystallographic studies and single molecule experiments. To complement such structural studies and consider the energetics of the conformational changes of myosin head, umbrella sampling molecular dynamics (MD) simulations were performed with the all-atom model of the scallop myosin sub-fragment 1 (S1) with a bound ATP in solution in explicit water using the crystallographic near-rigor and transition state conformations as two references. The constraints on RMSD reaction coordinates used for the umbrella sampling were found to steer the conformational changes efficiently, and relatively close correlations have been observed between the set of characteristic structural changes including the lever arm rotation and the closing of the nucleotide binding pocket. The lever arm angle and key residue interaction distances in the nucleotide binding pocket and the relay helix show gradual changes along the recovery stroke reaction coordinate, consistent with previous crystallographic and computational minimum energy studies. Thermal fluctuations, however, appear to make the switch-2 coordination of ATP more flexible than suggested by crystal structures. The local solvation environment of the fluorescence probe, Trp 507 (scallop numbering), also appears highly mobile in the presence of thermal fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号