首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In combination with novel linear covalently closed (LCC) DNA minivectors, referred to as DNA ministrings, a gemini surfactant-based synthetic vector for gene delivery has been shown to exhibit enhanced delivery and bioavailability while offering a heightened safety profile. Due to topological differences from conventional circular covalently closed (CCC) plasmid DNA vectors, the linear topology of LCC DNA ministrings may present differences with regards to DNA interaction and the physicochemical properties influencing DNA-surfactant interactions in the formulation of lipoplexed particles. In this study, N,N-bis(dimethylhexadecyl)-α,ω-propanediammonium(16-3-16)gemini-based synthetic vectors, incorporating either CCC plasmid or LCC DNA ministrings, were characterized and compared with respect to particle size, zeta potential, DNA encapsulation, DNase sensitivity, and in vitro transgene delivery efficacy. Through comparative analysis, differences between CCC plasmid DNA and LCC DNA ministrings led to variations in the physical properties of the resulting lipoplexes after complexation with 16-3-16 gemini surfactants. Despite the size disparities between the plasmid DNA vectors (CCC) and DNA ministrings (LCC), differences in DNA topology resulted in the generation of lipoplexes of comparable particle sizes. The capacity for ministring (LCC) derived lipoplexes to undergo complete counterion release during lipoplex formation contributed to improved DNA encapsulation, protection from DNase degradation, and in vitro transgene delivery.  相似文献   

3.
4.
Based upon their resistance to irreversible denaturation, covalently closed circular (CCC) DNA (non-nicked, double-stranded circular molecules) can be purified by alkaline denaturation, neutralization, and filtration through a nitrocellulose membrane. This procedure offers a simple means of isolating in vitro synthesized CCC DNA molecules. The preparations of molecules obtained by this method consisted of 91-97% CCC DNA and contained no detectable inhibitors of biological activity or enzymatic digestion.  相似文献   

5.
A preparation of serially passaged simian virus 40 (SV40) DNA, in which at least 66% of the molecules contain covalently linked cellular DNA sequences, was digested to completion with the Hemophilus influenzae restriction endonuclease. Polyacrylamide gel electrophoresis of the digest showed that the majority of the cleavage products migrated as nine classes of fragments, each class defined by a particular molecular weight. These classes of fragments differ in molecular weight from the fragments produced by the action of the same enzyme on plaque-purified virus DNA. Three classes of fragments were present in less than equimolar amounts relative to the original DNA. The remaining six classes of fragments each contain more than one fragment per original DNA molecule. DNA-DNA hybridization analysis (using the filter method) of the isolated cleavage products demonstrated the presence of highly reiterated cell DNA sequences in two of the nine classes of fragments. A third class of fragments hybridized with high efficiency only to serially passaged SV40 DNA; the level of hybridization to plaque-purified virus DNA was low and there was essentially no hybridization with cell DNA immobilized on filters. It is suggested that this class of fragments contains unique host sequences. It was estimated that at least 27% of the sequences in the substituted SV40 DNA molecules studied are host sequences. The majority of these are probably of the nonreiterated type.  相似文献   

6.
7.
8.
Abstract Telomeric DNA sequences are known to adopt unusual DNA structures upon protonation when contained into negatively supercoiled DNA. In this paper, the structural properties of (T(2)AG(3))(n) telomeric sequences of different length is analyzed in detail. Transition to the protonated form is observed at very low pH for (T(2)AG(3))(n<8) sequences. Formation of the protonated form is facilitated by negative supercoiling. The patterns of chemical modification obtained with different chemical reagents indicate that protonation induces denaturation of the (T(2)AG(3))(n) telomeric sequences. Upon denaturation, the "C-rich" strand becomes structured forming, most likely, hairpin-like conformations stabilized by the formation of C(+)·C pairs and, probably, of A(+)·A pairs. The "G-rich" strand of the (T(2)AG(3))(8) sequence shows also signs of becoming structured giving rise to various structural conformers which might include triple- and tetra-stranded conformations. However, in the case of shorter sequences, the "G-rich" strand remains basically single-stranded.  相似文献   

9.
A combination of mutations in bacteriophage lambda and its host Escherichia coli K-12 provides a convenient system for the isolation of large quantities of covalently closed circular DNA molecules. We describe two procedures for the large scale preparation of lambda DNA in the duplex circular form.  相似文献   

10.
Reproducible yields of covalently closed circular (plasmid) deoxyribonucleic acid were obtained from mutants defective for extracellular nuclease but not from the corresponding wild-type strain of Serratia marcescens  相似文献   

11.
Sonic hedgehog (Shh) signaling plays major roles in embryonic development and has also been associated with the progression of certain cancers. Here, Shh family members act directly as long range morphogens, and their ability to do so has been linked to the formation of freely diffusible multimers from the lipidated, cell-tethered monomer (ShhNp). In this work we demonstrate that the multimeric morphogen secreted from endogenous sources, such as mouse embryos and primary chick chondrocytes, consists of oligomeric substructures that are “undisruptable” by boiling, denaturants, and reducing agents. Undisruptable (UD) morphogen oligomers vary in molecular weight and possess elevated biological activity if compared with recombinant Sonic hedgehog (ShhN). However, ShhN can also undergo UD oligomerization via a heparan sulfate (HS)-dependent mechanism in vitro, and HS isolated from different sources differs in its ability to mediate UD oligomer formation. Moreover, site-directed mutagenesis of conserved ShhN glutamine residues abolishes UD oligomerization, and inhibitors directed against transglutaminase (TG) activity strongly decrease the amount of chondrocyte-secreted UD oligomers. These findings reveal an unsuspected ability of the N-terminal hedgehog (Hh) signaling domain to form biologically active, covalently cross-linked oligomers and a novel HS function in this TG-catalyzed process. We suggest that in hypertrophic chondrocytes, HS-assisted, TG-mediated Hh oligomerization modulates signaling via enhanced protein signaling activity.  相似文献   

12.
Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.  相似文献   

13.
The aim of this study was to assess the effect of 48-week entecavir therapy on serum and intrahepatic hepatitis B virus, covalently closed circular DNA (HBV cccDNA) levels in hepatitis B e antigen (HBeAg)-positive patients. A total of 120 patients with HBeAg-positive chronic hepatitis were treated with entecavir for 48 weeks. Serum HBV markers, total HBV DNA, and HBV cccDNA levels were measured at baseline and week 48. Biopsies from 20 patients were available for both intrahepatic total HBV DNA and cccDNA testing at these timepoints. HBV cccDNA levels were decreased from a median level of 5.1×106 copies/mL at baseline to a median level of 2.4×103 copies/mL at week 48. Reduction magnitudes of HBV cccDNA in patients with normalized alanine aminotransferase levels and those undergoing HBeAg seroconversion were significantly greater than those in alanine aminotransferase-abnormal and HBeAg positive patients. Intrahepatic HBV cccDNA was decreased significantly after 48 weeks of treatment, but could not be eradicated. In conclusion, treatment of HBeAg-positive hepatitis B patients with entecavir for 48 weeks decreased serum and intrahepatic HBV cccDNA significantly, and the magnitude of HBV cccDNA reduction was related to total HBV DNA decrease, alanine aminotransferase normalization, and HBeAg seroconversion.  相似文献   

14.
Abstract

The influence of double helix torsional elasticity on the compaction and structure of circular DNA compact form is studied theoretically in the case when the compact (globular) form has torus shape. For closed circular DNA the topological invariant, the linking number, yields a strict connection between conformation of the double helix considered as unifilar homopolymer and elastic energy of torsional twisting. The contribution of torsional elasticity to the free energy of the toruslike globule is calculated. This contribution is shown to be proportional to the square of superhelical density. Allowance of the torsional elasticity decreases the equilibrium radius of the toruslike globule formed by circular DNA. Closure of linear DNA into a ring widens the stability range of the relatively short DNA compact form and tightens it for long DNA.  相似文献   

15.
16.
Three plaque isolates of SV40 strain 777 and 1 plaque isolate of strain 776 were grown to high-titer stocks and serially passaged, undiluted, in monkey BS-C-1 cells. In each case, the serial passaging procedure resulted in the accumulation of closed-circular SV40 DNA molecules containing covalently linked sequences homologous to reiterated host cell DNA (called substituted virus DNA). The relative yields, at a given passage level, of SV40 DNA with measurable homology to host DNA varied in different sets of serial passages, including passages of the same virus clone. More reproducible yields of substituted viral DNA progeny were obtained when the serial passaging procedure was initiated from earlier passages rather than from the original plaque-purified stock. Fractionation of closed-circular SV40 DNA molecules on alkaline sucrose gadients indicated that the majority of substituted virus DNA molecules are not plaque producers and are slightly smaller in size than plaque-forming DNA molecules which display no detectable homology to host DNA. Evidence that substituted SV40 DNA molecules replicate during serial undiluted passage was obtained from experiments which demonstrated (i) the presence of host sequences in replicative forms of the viral DNA and (ii) the incorporation of (3)H-thymidine into host sequences isolated from the mature substituted virus DNA molecule.  相似文献   

17.
The polydisperse circular deoxyribonucleic acid (DNA) molecules which comprise up to 30% of the total extractable DNA of Bacillus megaterium strain 216 have been purified and partially characterized. Banding in cesium chlorideethidium bromide by "gradient relaxation" in a fixed-angle rotor provided good resolution of circular and chromosomal DNAs for preparative separations. Renaturation studies on purified circular DNA failed to reveal a rapidly renaturing fraction, and DNA-DNA hybridization studies indicated that the majority of the chromosomal nucleotide sequences are represented in the heterogeneous-size population of circular molecules. It is concluded that the circular DNA of B. megaterium does not represent typical bacterial plasmid DNA. The possibility that the circular DNA molecules are the result of the expression of a defective bacteriophage is discussed.  相似文献   

18.
Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of ∼21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号