首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Targeting multiple digestive proteases may be more effective in insect pest control than inhibition of a single enzyme class. We therefore explored possible interactions of three antimetabolic protease inhibitors fed to cowpea bruchids in artificial diets, using a recombinant soybean cysteine protease inhibitor scN, an aspartic protease inhibitor pepstatin A, and soybean Kunitz trypsin inhibitor KI. scN and pepstatin, inhibiting major digestive cysteine and aspartic proteases, respectively, significantly prolonged the developmental time of cowpea bruchids individually. When combined, the anti-insect effect was synergistic, i.e., the toxicity of the mixture was markedly greater than that of scN or pepstatin alone. KI alone did not impact insect development even at relatively high concentrations, but its anti-insect properties became apparent when acting jointly with scN or scN plus pepstatin. Incubating KI with bruchid midgut extract showed that it was partially degraded. This instability may explain its lack of anti-insect activity. However, this proteolytic degradation was inhibited by scN and/or pepstatin. Protection of KI from proteolysis in the insect digestive tract thus could be the basis for the synergistic effect. These observations support the concept that cowpea bruchid gut proteases play a dual role; digesting protein for nutrient needs and protecting insects by inactivating dietary proteins that may otherwise be toxic. Our results also suggest that transgenic resistance strategies that involve multigene products are likely to have enhanced efficacy and durability.  相似文献   

2.
Abstract 1 The soybean cysteine protease inhibitor soyacystatin N (scN) and Griffonia simplicifolia lectin II (rGSII) have defense functions against the coleopteran cowpea bruchid beetle Callosobruchus maculatus. However, the ability of the insect to activate scN‐insensitive digestive proteases and the relatively low potency of rGSII have hindered their practical application in plant protection. 2 Recent research suggests that defense proteins may achieve increased toxicity and durability when used in combination. Based on the structures of several natural toxin molecules, we hypothesized that covalently linked scN and rGSII could exhibit greater anti‐insect efficacy than the mixture containing individual proteins. 3 To test this hypothesis, a recombinant scN‐rGSII fusion protein that retained both protease inhibitor and lectin functions was constructed. 4 When fed to cowpea bruchid, this new protein showed a synergistic delay in insect development, whereas a mixture of the separate proteins only showed an additive effect. 5 Our results suggest that tethering digestive protease inhibitors to gut epithelium‐interacting lectins could give plant protection superior to strategies based on single genes or mixtures of single gene products.  相似文献   

3.
4.
5.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil and the Mexican bean weevil, are pests that damage stored seeds. Plant lectins have been implicated as antibiosis factors against insects, particularly the cowpea weevil, Callosobruchus maculatus. Talisia esculenta lectin (TEL) was tested for anti-insect activity against C. maculatus and Zabrotes subfasciatus larvae. TEL produced ca. 90% mortality to these bruchids when incorporated in an artificial diet at a level of 2% (w/w). The LD(50) and ED(50) for TEL was ca. 1% (w/w) for both insects. TEL was not digested by midgut preparations of C. maculatus and Z. subfasciatus. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

6.
We have previously demonstrated that Arabidopsis vegetative storage protein (AtVSP) is an acid phosphatase that has anti-insect activity in in vitro feeding assays [Liu et al., 2005. Plant Physiology 139, 1545-1556]. To investigate the functionality of AtVSP in planta as an anti-insect defense protein, we produced AtVSP-overexpressing as well as AtVSP-silenced transgenic Arabidopsis lines, and evaluated impact on the polyphagous American grasshopper Schistocerca americana. Grasshoppers showed no significant difference in weight gain and growth rate when feeding on wild type, overexpressing, or silenced lines, respectively. In addition, AtVSP protein was undetectable in either the midgut or frass of grasshoppers reared on transgenic plants suggesting that AtVSP was unable to withstand proteolytic degradation. To determine the stability of the AtVSP protein in grasshopper digestive canal, midgut extracts from various nymphal stages were incubated with bacterially expressed AtVSP for different periods of time. AtVSP was hydrolyzed rapidly by grasshopper midgut extract, in stark contrast with its fate when incubated with cowpea bruchid midgut extract. Multiple proteases have been detected in the midgut of grasshoppers, which may play important roles in determining the insect response to AtVSP. Results indicate that stability of an anti-insect protein in insect guts is a crucial property integral to the defense protein.  相似文献   

7.
8.
Genetic engineering may be used to introduce multiple insect resistance genes with different modes of action into crop plants. We explored the possible interactions of two differing gene products fed in the diet of cowpea weevil, Callosobruchus maculates (F.), a stored grain pest. The soybean cysteine protease inhibitor soyacystatin N (scN) and alpha-amylase inhibitor (alphaAI) from wheat have defensive function against this coleopteran. When artificial seeds containing both scN and alpha(AI) were infested with eggs of C. maculatus, the delays in larval development were longer than was predicted by summing the developmental delays seen when larvae were fed a diet containing the individual proteins, indicating that the effects of scN and alpha(AI) are synergistic. Alpha(AI) was readily hydrolyzed when incubated with insect gut extract. This proteolytic degradation was inhibited by scN, but not by Kunitz inhibitor (a serine protease inhibitor). Thus, degradation of alpha(AI) was due to proteolysis by insect digestive cysteine proteases. These data suggest that C. maculatus uses digestive enzymes not only to function in food protein digestion but also to defend the insects themselves by helping reduce the concentration of a toxic dietary protein.  相似文献   

9.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmoLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

10.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil, are pests that damage stored seeds. Plants synthesize a variety of molecules, including proteinaceous proteinase inhibitors, to defend themselves against attack by insects. In this work, a trypsin inhibitor (DMTI-II) isolated from Dimorphandra mollis seeds was tested for anti-insect activity against Callosobruchus maculatus larvae. The inhibitor produced ca. 67% mortality to this bruchid when incorporated into an artificial diet at a level of 1%. The doses necessary to cause 50% mortality (LD50) and to reduce weight by 50% (ED50) for DMTI-II were ca. 0.50% and 0.60%, respectively. The action of DMTI-II on C. maculatus larvae may involve the inhibition of trypsin-like activity of larval midgut extracts, the absence of digestion by midgut preparations or with a mixture of pepsin and papain, and its association with a chitin column and chitinous structure in the midgut of this insect.  相似文献   

11.
12.
13.
Griffonia simplicifolia lectin II (GSII) is a plant defensive protein that significantly delays development of the cowpea bruchid Callosobruchus maculatus (F.). Previous structure/function analysis by site-directed mutagenesis indicated that carbohydrate binding and resistance to insect gut proteolysis are required for the anti-insect activity of this lectin. However, whether there is a causal link between carbohydrate binding and resistance to insect metabolism remains unknown. Two proteases principally responsible for digestive proteolysis in third and fourth instar larvae of C. maculatus were purified by activated thiol sepharose chromatography and resolved as cathepsin L-like proteases, based on N-terminal amino acid sequence analysis. Digestion of bacterially expressed recombinant GSII (rGSII) and its mutant protein variants with the purified gut proteases indicates that carbohydrate binding, presumably to a target ligand in insect gut, and proteolytic resistance are independent properties of rGSII, and that both facilitate its efficacy as a plant defensive molecule.  相似文献   

14.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   

15.
Plant cysteine proteinase inhibitors (phytocystatins) have been implicated as defensive molecules against Coleopteran and Hemipteran insect pests. Two soybean cystatins, soyacystatin N (scN) and soyacystatin L (scL), have 70% sequence identity but scN is a much more potent inhibitor of papain, vicilin peptidohydrolase and insect gut proteinases. When these cystatins were displayed on phage particles, papain-binding affinity and CPI activity of scN were substantially greater than those of scL, in direct correlation with their relative CPI activity as soluble recombinant proteins. Furthermore, scN substantially delayed cowpea weevil (Callosobruchus maculatus (F.)) growth and development in insect feeding bioassays, whereas scL was essentially inactive as an insecticide. Papain biopanning selection of phage-displayed soyacystatins resulted in a 200–1000-fold greater enrichment for scN relative to scL. These results establish that binding affinity of cystatins can be used in phage display biopanning procedures to select variants with greater insecticidal activity, illustrating the potential of phage display and biopanning selection for directed molecular evolution of biological activity of these plant defensive proteins.  相似文献   

16.
抗虫植物基因工程研究进展   总被引:40,自引:0,他引:40  
虫害是造成农业减产的主要原因之一。据不完全统计,全世界每年因虫害引起的作物减产达总产量的15%,损失高达数千亿美元。在我国,因虫害水稻减产在lO%以上;小麦减产近20%;棉花减产在  相似文献   

17.
18.
Stability of plant defense proteins in the gut of insect herbivores   总被引:10,自引:0,他引:10       下载免费PDF全文
Plant defense against insect herbivores is mediated in part by enzymes that impair digestive processes in the insect gut. Little is known about the evolutionary origins of these enzymes, their distribution in the plant kingdom, or the mechanisms by which they act in the protease-rich environment of the animal digestive tract. One example of such an enzyme is threonine (Thr) deaminase (TD), which in tomato (Solanum lycopersicum) serves a dual role in isoleucine (Ile) biosynthesis in planta and Thr degradation in the insect midgut. Here, we report that tomato uses different TD isozymes to perform these functions. Whereas the constitutively expressed TD1 has a housekeeping role in Ile biosynthesis, expression of TD2 in leaves is activated by the jasmonate signaling pathway in response to herbivore attack. Ingestion of tomato foliage by specialist (Manduca sexta) and generalist (Trichoplusia ni) insect herbivores triggered proteolytic removal of TD2's C-terminal regulatory domain, resulting in an enzyme that degrades Thr without being inhibited through feedback by Ile. This processed form (pTD2) of TD2 accumulated to high levels in the insect midgut and feces (frass). Purified pTD2 exhibited biochemical properties that are consistent with a postingestive role in defense. Shotgun proteomic analysis of frass from tomato-reared M. sexta identified pTD2 as one of the most abundant proteins in the excrement. Among the other tomato proteins identified were several jasmonate-inducible proteins that have a known or proposed role in anti-insect defense. Subtilisin-like proteases and other pathogenesis-related proteins, as well as proteins of unknown function, were also cataloged. We conclude that proteomic analysis of frass from insect herbivores provides a robust experimental approach to identify hyperstable plant proteins that serve important roles in defense.  相似文献   

19.
Variant vicilins (7S storage globulins) of cowpea seeds (Vigna unguiculata) are considered as the main resistance factor present in some African genotypes against the bruchid Callosobruchus maculatus. It has been suggested that the toxic properties of vicilins may be related to their recognition and interaction with glycoproteins and other membrane constituents along the digestive tract of the insect. However, the possibility of a systemic effect has not yet been investigated. The objective of this work was to study the fate of 7S storage globulins of V. unguiculata in several organs of larvae of the cowpea weevil C. maculatus. Results demonstrated binding of vicilins to brush border membrane vesicles, suggesting the existence of specific receptors. Vicilins were detected in the haemolymph, in the midgut, and in internal organs, such as fat body and malpighian tubules. There is evidence of accumulation of vicilins in the fat body of both larvae and adults. The absorption of vicilins and their presence in insect tissues parallels classical sequestration of secondary compounds.  相似文献   

20.
Plants can accumulate, constitutively and/or after induction, a wide variety of defense compounds in their tissues that confer resistance to herbivorous insects. The naturally occurring plant resistance gene pool can serve as an arsenal in pest management via transgenic approaches. As insect‐plant interaction research rapidly advances, it has gradually become clear that the effects of plant defense compounds are determined not only by their toxicity toward target sites, but also by how insects respond to the challenge. Insect digestive tracts are not passive targets of plant defense, but often can adapt to dietary challenge and successfully deal with various plant toxins and anti‐metabolites. This adaptive response has posed an obstacle to biotechnology‐based pest control approaches, which underscores the importance of understanding insect adaptive mechanisms. Molecular studies on the impact of protease inhibitors on insect digestion have contributed significantly to our understanding of insect adaptation to plant defense. This review will focus on exposing how the insect responds to protease inhibitors by both qualitative and quantitative remodeling of their digestive proteases using the cowpea bruchid–soybean cysteine protease inhibitor N system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号