首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang G  Luo H  Meng K  Wang Y  Huang H  Shi P  Pan X  Yang P  Diao Q  Zhang H  Yao B 《PloS one》2011,6(2):e16731

Background

The rumen harbors a complex microbial ecosystem for efficient hydrolysis of plant polysaccharides which are the main constituent of the diet. Xylanase is crucial for hemicellulose hydrolysis and plays an important role in the plant cell wall degradation. Xylanases of ruminal strains were widely studied, but few studies have focused on their diversity in rumen microenvironment.

Methodology/Principal Findings

We explored the genetic diversity of xylanases belonging to two major glycosyl hydrolase families (GH 10 and 11) in goat rumen contents by analyzing the amplicons generated with two degenerate primer sets. Fifty-two distinct GH 10 and 35 GH 11 xylanase gene fragments (similarity <95%) were retrieved, and most had low identities with known sequences. Based on phylogenetic analysis, all GH 10 xylanase sequences fell into seven clusters, and 88.5% of them were related to xylanases from Bacteroidetes. Five clusters of GH 11 xylanase sequences were identified. Of these, 85.7% were related to xylanases from Firmicutes, and 14.3% were related to those of rumen fungi. Two full-length xylanase genes (one for each family) were directly cloned and expressed in Escherichia coli. Both the recombinant enzymes showed substantial xylanase activity, and were purified and characterized. Combined with the results of sheep rumen, Bacteroidetes and Firmicutes are the two major phyla of xylan-degrading microorganisms in rumen, which is distinct from the representatives of other environments such as soil and termite hindgut, suggesting that xylan-degrading microorganisms are environment specific.

Conclusion/Significance

The numerous new xylanase genes suggested the functional diversity of xylanase in the rumen microenvironment which may have great potential applications in industry and agriculture. The phylogenetic diversity and different distributions of xylanase genes will help us understand their roles in plant cell wall degradation in the rumen microenvironment.  相似文献   

2.

Background and Aims

Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover.

Methods

In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities.

Key Results

Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification.

Conclusions

The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils.  相似文献   

3.

Background

The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems.

Methods

We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA).

Results and Conclusions

Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.  相似文献   

4.
5.

Background

The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution.

Methodology/Principal Findings

Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat-specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta-diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity.

Conclusions/Significance

Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation.  相似文献   

6.

Background

Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean.

Methodology/Principal Findings

We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent.

Conclusions/Significance

Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean.  相似文献   

7.
8.

Background

Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time.

Methodology/Principal Findings

In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers.

Conclusions

Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities.  相似文献   

9.
Bacterial diversity stabilizes community productivity   总被引:4,自引:0,他引:4  

Background

Stability is a crucial ecosystem feature gaining particular importance in face of increasing anthropogenic stressors. Biodiversity is considered to be a driving biotic force maintaining stability, and in this study we investigate how different indices of biodiversity affect the stability of communities in varied abiotic (composition of available resources) and biotic (invasion) contexts.

Methodology/Principal Findings

We set up microbial microcosms to study the effects of genotypic diversity on the reliability of community productivity, defined as the inverse of the coefficient of variation of across-treatment productivity, in different environmental contexts. We established a bacterial diversity gradient ranging from 1 to 8 Pseudomonas fluorescens genotypes and grew the communities in different resource environments or in the presence of model invasive species. Biodiversity significantly stabilized community productivity across treatments in both experiments. Path analyses revealed that different aspects of diversity determined stability: genotypic richness stabilized community productivity across resource environments, whereas functional diversity determined stability when subjected to invasion.

Conclusions/Significance

Biodiversity increases the stability of microbial communities against both biotic and abiotic environmental perturbations. Depending on stressor type, varying aspects of biodiversity contribute to the stability of ecosystem functions. The results suggest that both genetic and functional diversity need to be preserved to ensure buffering of communities against abiotic and biotic stresses.  相似文献   

10.

Background

Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome.

Results

Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure.

Conclusions

Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our health and well-being.  相似文献   

11.
12.
Molecular detection and diversity of xylanase genes in alpine tundra soil   总被引:2,自引:0,他引:2  
Xylan is a major polysaccharide in plant cell walls, and its degradation is mainly conducted by microbial xylanases in nature. To explore the xylanase diversity in the environment, two sets of degenerate primers were designed based on the microbial xylanase sequences in Pfam database of glycosyl hydrolase (GH) family 10 and 11 and were used to amplify objective gene fragments directly from the alpine tundra soil DNA of the Tianshan Mountains, China. Ninety-six distinct GH 10 and 31 GH 11 xylanase gene fragments were retrieved, and most of them have low identities with known sequences in GenBank. Based on phylogenetic analysis, all of the GH 10 xylanase sequences fell into six clusters and were related to xylanases from Actinobacteria, Proteobacteria, Verrucomicrobia, Bacteroidetes, Firmicutes, and Acidobacteria. Three clusters of GH 11 xylanase sequences were established, and two of them were related with enzymes from fungi. These results indicated the diversity of xylanase genes in this cold environment. Four xylanolytic strains were isolated from the soil, and GH 10 xylanase gene fragments were cloned using the same primers. A full-length gene was obtained and expressed in Escherichia coli, and the recombinant enzyme showed some cold-related characteristics. Our study provides an efficient molecular approach to study xylanase in complex environments and casts an insight into the diversity and distribution of xylanases in a cold environment, which is very meaningful to understand their roles in xylan degradation in nature.  相似文献   

13.
14.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

The western corn rootworm (WCR) is one of the economically most important pests of maize. A better understanding of microbial communities associated with guts and eggs of the WCR is required in order to develop new pest control strategies, and to assess the potential role of the WCR in the dissemination of microorganisms, e.g., mycotoxin-producing fungi.

Methodology/Principal Findings

Total community (TC) DNA was extracted from maize rhizosphere, WCR eggs, and guts of larvae feeding on maize roots grown in three different soil types. Denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene and ITS fragments, PCR-amplified from TC DNA, were used to investigate the fungal and bacterial communities, respectively. Microorganisms in the WCR gut were not influenced by the soil type. Dominant fungal populations in the gut were affiliated to Fusarium spp., while Wolbachia was the most abundant bacterial genus. Identical ribosomal sequences from gut and egg samples confirmed a transovarial transmission of Wolbachia sp. Betaproteobacterial DGGE indicated a stable association of Herbaspirillum sp. with the WCR gut. Dominant egg-associated microorganisms were the bacterium Wolbachia sp. and the fungus Mortierella gamsii.

Conclusion/Significance

The soil type-independent composition of the microbial communities in the WCR gut and the dominance of only a few microbial populations suggested either a highly selective environment in the gut lumen or a high abundance of intracellular microorganisms in the gut epithelium. The dominance of Fusarium species in the guts indicated WCR larvae as vectors of mycotoxin-producing fungi. The stable association of Herbaspirillum sp. with WCR gut systems and the absence of corresponding sequences in WCR eggs suggested that this bacterium was postnatally acquired from the environment. The present study provided new insights into the microbial communities associated with larval guts and eggs of the WCR. However, their biological role remains to be explored.  相似文献   

16.

Background

“The enigma of soil animal species diversity” was the title of a popular article by J. M. Anderson published in 1975. In that paper, Anderson provided insights on the great richness of species found in soils, but emphasized that the mechanisms contributing to the high species richness belowground were largely unknown. Yet, exploration of the mechanisms driving species richness has focused, almost exclusively, on above-ground plant and animal communities, and nearly 35 years later we have several new hypotheses but are not much closer to revealing why soils are so rich in species. One persistent but untested hypothesis is that species richness is promoted by small-scale environmental heterogeneity.

Methodology/Principal Findings

To test this hypothesis we manipulated small-scale heterogeneity in soil properties in a one-year field experiment and investigated the impacts on the richness of soil fauna and evenness of the microbial communities. We found that heterogeneity substantially increased the species richness of oribatid mites, collembolans and nematodes, whereas heterogeneity had no direct influence on the evenness of either the fungal, bacterial or archaeal communities or on species richness of the large and mobile mesostigmatid mites. These results suggest that the heterogeneity-species richness relationship is scale dependent.

Conclusions

Our results provide direct evidence for the hypothesis that small-scale heterogeneity in soils increase species richness of intermediate-sized soil fauna. The concordance of mechanisms between above and belowground communities suggests that the relationship between environmental heterogeneity and species richness may be a general property of ecological communities.  相似文献   

17.

Background

Disturbance to human microbiota may underlie several pathologies. Yet, we lack a comprehensive understanding of how lifestyle affects the dynamics of human-associated microbial communities.

Results

Here, we link over 10,000 longitudinal measurements of human wellness and action to the daily gut and salivary microbiota dynamics of two individuals over the course of one year. These time series show overall microbial communities to be stable for months. However, rare events in each subjects’ life rapidly and broadly impacted microbiota dynamics. Travel from the developed to the developing world in one subject led to a nearly two-fold increase in the Bacteroidetes to Firmicutes ratio, which reversed upon return. Enteric infection in the other subject resulted in the permanent decline of most gut bacterial taxa, which were replaced by genetically similar species. Still, even during periods of overall community stability, the dynamics of select microbial taxa could be associated with specific host behaviors. Most prominently, changes in host fiber intake positively correlated with next-day abundance changes among 15% of gut microbiota members.

Conclusions

Our findings suggest that although human-associated microbial communities are generally stable, they can be quickly and profoundly altered by common human actions and experiences.

Electronic supplementary material

The online version of this article (doi:10.1186/gb-2014-15-7-r89) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood.

Methodology/Principal Findings

The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil.

Conclusions/Significance

These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.  相似文献   

19.

Background

In the last years, many olive plantations in southern Spain have been mediated by the use of self-rooted planting stocks, which have incorporated commercial AMF during the nursery period to facilitate their establishment. However, this was practised without enough knowledge on the effect of cropping practices and environment on the biodiversity of AMF in olive orchards in Spain.

Methodology/Principal Findings

Two culture-independent molecular methods were used to study the AMF communities associated with olive in a wide-region analysis in southern Spain including 96 olive locations. The use of T-RFLP and pyrosequencing analysis of rDNA sequences provided the first evidence of an effect of agronomic and climatic characteristics, and soil physicochemical properties on AMF community composition associated with olive. Thus, the factors most strongly associated to AMF distribution varied according to the technique but included among the studied agronomic characteristics the cultivar genotype and age of plantation and the irrigation regimen but not the orchard management system or presence of a cover crop to prevent soil erosion. Soil physicochemical properties and climatic characteristics most strongly associated to the AMF community composition included pH, textural components and nutrient contents of soil, and average evapotranspiration, rainfall and minimum temperature of the sampled locations. Pyrosequencing analysis revealed 33 AMF OTUs belonging to five families, with Archaeospora spp., Diversispora spp. and Paraglomus spp., being first records in olive. Interestingly, two of the most frequent OTUs included a diverse group of Claroideoglomeraceae and Glomeraceae sequences, not assigned to any known AMF species commonly used as inoculants in olive during nursery propagation.

Conclusions/Significance

Our data suggests that AMF can exert higher host specificity in olive than previously thought, which may have important implications for redirecting the olive nursery process in the future as well as to take into consideration the specific soils and environments where the mycorrhized olive trees will be established.  相似文献   

20.

Background

As the largest low-latitude permafrost region, the Tibetan Plateau (TP) is an important part of the earth’s terrestrial ecosystem and one of the most vulnerable areas to climate change and human activities. However, to the best of our knowledge, the bacterial communities in TP soils and their roles in biogeochemical cycles remain limited.

Results

In this study, we report the bacterial community structure and function as well as their correlation with environmental factors in TP major ecosystems (farmland, alpine meadow and oligosaline lake) by using metagenomic approaches. Compared with other soil samples in various environments, TP soils share a core set of microorganisms with a distinct abundance and composition. Among TP soil samples, the taxonomic and functional composition of bacterial communities among the upper (3-5 cm) and lower (18-20 cm) soils of farmland sites were highly similar, whereas the dissimilarities within alpine meadow samples were significantly greater than among farmland samples. A similar pattern was observed in elements cycles and pathways associated with adaption to environment and land use types. Canonical correlation analysis revealed that the bacterial communities in most of farmland and alpine meadow soil samples were also significantly correlated with geogenic variables. Specifically, the root-nodule bacteria are negatively correlated with the soil moisture and pH, while Thiobacillus associated with sulfur cycles show potential responses to low temperature and intense UV radiation.

Conclusions

These findings indicate that the bacterial community structure and functions in TP soils were influenced by both human activities and soil environmental properties, and that the bacterial communities appeared to be more homogenized in the farmland soils compared with pristine alpine meadows.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-820) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号