首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using optical imaging of retinal ganglion cell (RGC) calcium dynamics in living intact retinal wholemount preparations, we tested whether RGCs in an experimental rat glaucoma model were more sensitive to exogenously applied glutamate as a result of deficient glutamate clearance mechanisms. In contrast to post-natal rat RGCs in purified cultures, in which the calcium influx induced by 200 microm NMDA and 10 microm glutamate was approximately equivalent, application of up to 500 microm glutamate did not affect calcium levels in RGCs in retinal wholemounts, even though the RGCs responded to 200 microm NMDA. Glutamate (500 microm) did elicit a RGC calcium response in retinal wholemounts when glutamate transporters were inhibited pharmacologically with DL-threo-beta-benzyloxyaspartate, confirming the presence of glutamate clearance mechanisms in this intact retina preparation. The effect of glutamate was then assessed on retinas from rats with chronically elevated intraocular pressure in one eye, produced by the injection of hypertonic saline into an episcleral vein. Application of up to 500 microm glutamate had no effect on RGC calcium levels, while millimolar concentrations of glutamate induced a calcium signal in RGCs that was indistinguishable from that in fellow control retinas. Therefore, there was no evidence for a global defect in glutamate uptake in this rat model of experimental glaucoma. Imaging glutamatergic calcium dynamics of RGCs in retinal wholemounts represents a novel methodology to probe glutamate transporter function and dysfunction in an intact CNS tissue system.  相似文献   

2.
Autophagy is reported to have important roles in relation to regulated cell death pathways and neurodegeneration. This study used chronic hypertensive glaucoma rat model to investigate whether the autophagy pathway has a role in the apoptosis of retinal ganglion cells (RGCs) after chronic intraocular pressure (IOP) elevation. Under electron microscopy, autophagosomes were markedly accumulated in the dendrites and cytoplasm of RGCs after IOP elevation. Western blot analysis showed that LC3-II/LC3-I and beclin-1 were upregulated throughout the 8-weeks period after IOP elevation. The pattern of LC3 immunostaining showed autophagy activation in the cytoplasm of RGCs to increase and peak at 4 weeks after IOP elevation. Most of these LC3B-positive RGCs underwent apoptosis by terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling, and inhibition of autophagy with 3-methyladenine decreased RGC apoptosis. The activated pattern shows that autophagy is initially activated in the dendrites of the RGCs, but, thereafter autophagy is mainly activated in the cytoplasm of RGCs. This may show that autophagy is differently regulated in different compartments of the neuron. This present study showed that autophgy is activated in RGCs and has a role in autophagic cell death after chronic IOP elevation.  相似文献   

3.
Mitochondrial abnormality has been implicated in various models of retinal ganglion cell (RGC) degeneration. We investigated modulation of mitochondrial membrane permeability and apoptosis-inducing factor (AIF) translocation in a rat experimental glaucoma model. A decrease in MitoTracker-labeled mitochondria around the lamina area of the optic nerve was observed in the glaucomatous eye. Immunoblot analysis for axonal motor proteins showed that a significant decrease in kinesin 1 and myosin Va levels in the glaucomatous optic nerve. A significant decrease in mitochondrial thioredoxin 2 (Trx2) level was observed in the optic nerve after intraocular pressure (IOP) elevation. Translocation of AIF from the mitochondria to the axoplasm and nucleus was observed in the axon and cell body, respectively. Trx2 over-expression in the mitochondrial membrane of RGC-5 cells inhibited AIF translocation, resulting in cytoprotective effect against neurotoxicity induced by TNF-α/buthionine sulfoximine treatment. In vivo transfection was performed with EGFP-Trx2 plasmid and electroporation. Over-expression of Trx2 in the retina and optic nerve indicated the protective effect against high IOP induced axonal degeneration. Thus, the decreased mitochondrial membrane potential and subsequent AIF translocation were involved in the glaucomatous neurodegeneration. Furthermore, modulation of mitochondria through the inhibition of AIF translocation may become a new treatment strategy for neurodegenerative disease, such as glaucoma.  相似文献   

4.
In this study,the role of melanopsin-expressing retinal ganglion cells(mRGCs) in the glaucoma-induced depressive behavioral response pattern was investigated.The CFP-D2 transgenic glaucoma animal model from five age groups was used in this study.Immunohistochemical labeling,quantitative analysis of mRGC morphology,open field test(OFT),and statistical analysis were used.In comparison with C57 BL/6 mice,the age-matched CFP-D2 mice had significantly elevated intraocular pressure(IOP).We observed parallel morphological changes in the retina,including a reduction in the density of cyan fluorescent protein(CFP) expressing cells(cells mm 2 at 2 months of age,1309±26;14 months,878±30,P<0.001),mRGCs(2 months,48±3;14 months,19±4,P<0.001),Brn3b-expressing RGCs(2 months,1283±80;14 months,950±31,P<0.001),Brn-3b expressing mRGCs(5 months,50.17%±5.5%;14 months,12.61%±3.8%,P<0.001),and reduction in the dendritic field size of mRGCs(mm2 at 2 months,0.077±0.015;14 months,0.065±0.015,P<0.05).CFP-D2 mice had hyperactive locomotor activity patterns based on OFT findings of the total distance traveled,number of entries into the center,and time spent in the center of the testing apparatus.The glaucoma induced hyperactive response pattern could be associated with dysfunctional mRGCs,most likely Brn-3b-positive mRGCs in CFP-D2 mice.  相似文献   

5.
Endothelin receptors in light-induced retinal degeneration   总被引:1,自引:0,他引:1  
Excessive light exposure leads to retinal degeneration in albino animals and exacerbates the rate of photoreceptor apoptosis in several retinal diseases. In previous studies we have described the presence of endothelin-1 (ET-1) and its receptors (ET-A and ET-B) in different sites of the mouse retina, including the retinal pigment epithelium, the outer plexiform layer (OPL), astrocytes, the ganglion cell layer (GCL), and vascular endothelia. After light-induced degeneration of photoreceptors, endothelinergic structures disappear from the OPL, but ET-1 and ET-B immunoreactivities increase in astrocytes. Here, we present novel observations about the course of light-induced retinal degeneration in BALB-c mice exposed to 1500 lux during 4 days with or without treatment with tezosentan, a mixed endothelinergic antagonist. Retinal whole mounts were immunostained with anticleaved caspase-3 (CC-3) serum to identify apoptotic photoreceptor cells within the outer nuclear layer (ONL). Glial activation was measured as glial fibrillary acidic protein (GFAP) immunoreactivity in retinal whole mounts and in Western blots from retinal extracts. Tezosentan treatment significantly reduced both the number of CC3-immunoreactive cells and GFAP levels, suggesting that inhibition of endothelinergic receptors could play a role in photoreceptor survival. Using confocal double immunofluorescence, we have observed that ET-A seems to be localized in bipolar cell dendrites, whereas ET-B is localized in horizontal cells. Our observations suggest the existence of an endothelinergic mechanism modulating synaptic transmission in the OPL. This mechanism could perhaps explain the effects of tezosentan treatment on photoreceptor survival.  相似文献   

6.
Glaucoma is defined as a chronic and progressive optic nerve neuropathy, characterized by apoptosis of retinal ganglion cells (RGC) that leads to irreversible blindness. Ocular hypertension is a major risk factor, but in glaucoma RGC death can persist after ocular hypertension is normalized. To understand the mechanism underlying chronic RGC death we identified and characterized a gene product, alpha2-macroglobulin (alpha2M), whose expression is up-regulated early in ocular hypertension and remains up-regulated long after ocular hypertension is normalized. In ocular hypertension retinal glia up-regulate alpha2M, which binds to low-density lipoprotein receptor-related protein-1 receptors in RGCs, and is neurotoxic in a paracrine fashion. Neutralization of alpha2M delayed RGC loss during ocular hypertension; whereas delivery of alpha2M to normal eyes caused progressive apoptosis of RGC mimicking glaucoma without ocular hypertension. This work adds to our understanding of the pathology and molecular mechanisms of glaucoma, and illustrates emerging paradigms for studying chronic neurodegeneration in glaucoma and perhaps other disorders.  相似文献   

7.
RGC axons extend in the optic tracts in a manner that correlates with the expression in the hypothalamus and epithalamus of a soluble factor inhibitory to RGC axon outgrowth. Additionally, although the RGC axons extend adjacent to the telencephalon, they do not normally grow into this tissue. Here, we show that slit1 and slit2, known chemorepellents for RGC axons expressed in specific regions of the diencephalon and telencephalon, help regulate optic tract development. In mice lacking slit1 and slit2, a subset of RGC axons extend into the telencephalon and grow along the pial surface but not more deeply into this tissue. Surprisingly, distinct guidance errors occur in the telencephalon of slit1 -/-; slit2 +/- and slit1/2 -/- embryos, suggesting that the precise level of Slits is critical for determining the path followed by individual axons. In mice lacking both slit1 and slit2, a subset of RGC axons also project aberrantly into the epithalamus, pineal and across the dorsal midline. However, many axons reach their primary target, the superior colliculus. This demonstrates that Slits play an important role in directing the guidance of post-crossing RGC axons within the optic tracts but are not required for target innervation.  相似文献   

8.
Recent observations suggest that the vasoactive peptide endothelin-1 (ET-1) may be an important contributor to the etiology of glaucoma. ET-1 administration has been shown to produce optic nerve axonal loss and apoptosis of retinal ganglion cells. Ocular ET-1 levels are elevated in aqueous humor in response to elevated intraocular pressure both in glaucoma patients and in animal models of glaucoma; however, the precise mechanisms by which ET-1 mediates glaucomatous optic neuropathy are not clear. Presently we report that ET-1-mediated apoptosis was markedly attenuated in ETB receptor-deficient rats, suggesting a key role for ETB receptors in apoptosis of retinal ganglion cells by ET-1 treatment. Using virally transformed rat retinal ganglion cells (RGC-5 cells), we found that ET-1 (100 nmol/L) treatment produced apoptotic changes in these cells that was determined by flow cytometric analyses, release of mitochondrial cytochrome c to the cytosol, and increased phosphorylation of c-Jun N-terminal kinase. Pretreatment with the ETB-receptor antagonist BQ788 (1 micromol/L) was able to significantly attenuate ET-1-mediated apoptosis in RGC-5 cells. ET-1-mediated apoptotic changes in RGC-5 cells were associated with ETB-receptor activation and were accompanied by a significant upregulation of ETB-receptor expression. These studies suggest that ocular ET-1 acts through ETB receptors to mediate apoptosis of retinal ganglion cells, a key event in glaucoma and related optic neuropathies.  相似文献   

9.
Weick M  Demb JB 《Neuron》2011,71(1):166-179
Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization.  相似文献   

10.
11.
Advanced primary open-angle glaucoma (POAG) is characterized by progressive retinal ganglion cell complex (RGCC) damage that may cause subsequent disruption of the circadian rhythms. Therefore, we evaluated circadian body temperature (BT) rhythm and sleep characteristics of 115 individuals (38 men and 77 women) diagnosed with POAG. GLV (global loss volume; %), a measure of RGCC damage, was estimated by high-definition optical coherence tomography, and RGC functional ability was assessed by pattern electroretinogram amplitude (PERGA). Depending on dynamics of POAG progression criteria, two groups were formed that were distinctively different in GLV: Stable POAG group (S-POAG; GLV = 5.95 ± 1.84, n = 65) and Progressive POAG group (P-POAG; GLV = 24.27 ± 5.09, n = 50). S-POAG and P-POAG groups were not different in mean age (67.61 ± 7.56 versus 69.98 ± 8.15) or body mass index (24.66 ± 3.03 versus 24.77 ± 2.90). All subjects performed 21 around-the-clock BT self-measurements during a 72-h period and kept activity/sleep diaries. Results showed pronounced disruption of circadian physiology in POAG and its progression with increasing severity of the disease. The daily mean of BT was unusually low, compared to age-matched controls. Moreover, our results revealed distinctive features of BT circadian rhythm alterations in POAG development and POAG progression. S-POAG is associated with lowered BT circadian rhythm robustness and inter-daily phase stability compared to controls. In the P-POAG group, the mean phase of the circadian BT rhythm was delayed by about 5 h and phases were highly scattered among individual patients, which led to reduced group mean amplitude. Circadian amplitudes of individuals were not different between the groups. Altogether, these results suggest that the body clock still works in POAG patients, but its entrainment to the 24-h environment is compromised. Probably because of the internal desynchronization, bedtime is delayed, and sleep duration is accordingly shortened by about 55 min in P-POAG compared to S-POAG patients. In the entire POAG cohort (both groups), later sleep phase and shorter mean sleep duration correlate with the delayed BT phase (r = 0.215; p = 0.021 and r = 0.322; p = 0.0004, respectively). An RGCC GLV of 15% apparently constitutes a threshold above which a delay of the circadian BT rhythm and a shortening of sleep duration occur.  相似文献   

12.
Like all cells, neurons adapt to stress by transient alterations in phenotype, an epigenetic response that forms the basis for preconditioning against acute ischemic injury in the central nervous system. We recently showed that a modified repetitive hypoxic preconditioning (RHP) regimen significantly extends the window of ischemic tolerance to acute retinal ischemic injury from days to months. The present study was undertaken to determine if this uniquely protracted neuroprotective phenotype would also confer resistance to glaucomatous neurodegeneration. Retinal ganglion cell death at somatic and axonal levels was assessed after both 3 and 10 wks of sustained intraocular hypertension in an adult mouse model of inducible, open-angle glaucoma, with or without RHP before intraocular pressure elevation. Loss of brn3-positive ganglion cell soma after 3 wks of experimental glaucoma, along with increases in several apoptotic endpoints, were all significantly and robustly attenuated in mice subjected to RHP. Soma protection by RHP was also confirmed after 10 wks of intraocular hypertension by brn3 and SMI32 immunostaining. In addition, quantification of axon density in the postlaminar optic nerve documented robust preservation in RHP-treated mice, and neurofilament immunostaining also revealed preconditioning-induced improvements in axon integrity/survival in both retina and optic nerve after 10 wks of experimental glaucoma. This uniquely protracted period of phenotypic change, established in retinal ganglion cells by the activation of latent antiapoptotic, prosurvival mechanisms at both somatic and axonal levels, reflects a novel form of inducible neuronal plasticity that may provide innovative therapeutic targets for preventing and treating glaucoma and other neurodegenerative diseases.  相似文献   

13.
Glaucoma is the second leading cause of blindness in the world. The ultimate cause of vision loss due to glaucoma is thought to be retinal ganglion cell (RGC) apoptosis. Neuroprotection of RGC is becoming an important approach of glaucoma therapy. Several lines of evidence suggest that estrogen has neurotrophic and neuroprotective properties. In this study, we examine the role of estrogen in preventing RGC loss in DBA/2J mouse, an in vivo model of an inherited (pigmentary) glaucoma. Two-month-old female DBA/2J mice were anesthetized and ovariectomized with or without subcutaneous 17beta-estradiol (betaE2) pellet implantation. RGC survival was evaluated from flat-mounted whole retinas by counting retrograde-labeled cells. The loss of nerve fibers and RGC were also evaluated in paraffin-fixed retinal cross sections. Biochemical alterations in the retinas of DBA/2J mice in response to systemic injection of betaE2 were also examined. We have made several important observations showing that: (1) betaE2 treatment reduced the loss of RGC and neurofibers through inhibition of ganglion cell apoptosis, (2) betaE2 activated Akt and cAMP-responsive-element-binding-protein (CREB), (3) betaE2 up-regulated thioredoxin-1 (Trx-1) expression, (4) betaE2 reduced the increased activations of mitogen-activated protein kinases (MAPK) and NF-kappaB, (5) betaE2 inhibited the increased interleukin-18 (IL-18) expression, and (6) treatment with tamoxifen, an estrogen receptor antagonist, blocked betaE2-mediated activation of Akt and inhibition of MAPK phosphorylation in the retinas of DBA/2J mice. These findings suggest the possible involvement of multiple biochemical events, including estrogen receptor/Akt/CREB/thioredoxin-1, and estrogen receptor/MAPK/NF-kappaB, in estrogen-mediated retinal ganglion cell protection.  相似文献   

14.
15.
Glaucoma can result in retinal ganglion cell (RGC) death and permanently damaged vision. Pathologically high intraocular pressure (ph-IOP) is the leading cause of damaged vision during glaucoma; however, controlling ph-IOP alone does not entirely prevent the loss of glaucomatous RGCs, and the underlying mechanism remains elusive. In this study, we reported an increase in ferric iron in patients with acute primary angle-closure glaucoma (the most typical glaucoma with ph-IOP damage) compared with the average population by analyzing free iron levels in peripheral serum. Thus, iron metabolism might be involved in regulating the injury of RGCs under ph-IOP. In vitro and in vivo studies confirmed that ph-IOP led to abnormal accumulation of ferrous iron in cells and retinas at 1–8 h post-injury and elevation of ferric iron in serum at 8 h post-injury. Nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin heavy polypeptide 1(FTH1) is essential to disrupt iron metabolism in the retina after ph-IOP injury. Furthermore, knockdown of Ncoa4 in vivo inhibited FTH1 degradation and reduced the retinal ferrous iron level. Elevated ferrous iron induced by ph-IOP led to a marked accumulation of pro-ferroptotic factors (lipid peroxidation and acyl CoA synthetase long-chain family member 4) and a depletion of anti-ferroptotic factors (glutathione, glutathione peroxidase 4, and nicotinamide adenine dinucleotide phosphate). These biochemical changes resulted in RGC ferroptosis. Deferiprone can pass through the blood-retinal barrier after oral administration and chelated abnormally elevated ferrous iron in the retina after ph-IOP injury, thus inhibiting RGC ferroptosis and protecting visual function. In conclusion, this study revealed the role of NCOA4-FTH1-mediated disturbance of iron metabolism and ferroptosis in RGCs during glaucoma. We demonstrate the protective effect of Deferiprone on RGCs via inhibition of ferroptosis, providing a research direction to understand and treat glaucoma via the iron homeostasis and ferroptosis pathways.Subject terms: Neurological disorders, Pathogenesis, Peripheral nervous system, Metals  相似文献   

16.
Primary open‐angle glaucoma (POAG) is one of the most common causes for blindness worldwide. Although an elevated intraocular pressure (IOP) is the main risk factor, the exact pathology remained indistinguishable. Therefore, it is necessary to have appropriate models to investigate these mechanisms. Here, we analysed a transgenic glaucoma mouse model (βB1‐CTGF) to elucidate new possible mechanisms of the disease. Therefore, IOP was measured in βB1‐CTGF and wildtype mice at 5, 10 and 15 weeks of age. At 5 and 10 weeks, the IOP in both groups were comparable (P > 0.05). After 15 weeks, a significant elevated IOP was measured in βB1‐CTGF mice (P < 0.001). At 15 weeks, electroretinogram measurements were performed and both the a‐ and b‐wave amplitudes were significantly decreased in βB1‐CTGF retinae (both P < 0.01). Significantly fewer Brn‐3a+ retinal ganglion cells (RGCs) were observed in the βB1‐CTGF group on flatmounts (P = 0.02), cross‐sections (P < 0.001) and also via quantitative real‐time PCR (P = 0.02). Additionally, significantly more cleaved caspase 3+ RGCs were seen in the βB1‐CTGF group (P = 0.002). Furthermore, a decrease in recoverin+ cells was observable in the βB1‐CTGF animals (P = 0.004). Accordingly, a significant down‐regulation of Recoverin mRNA levels were noted (P < 0.001). Gfap expression, on the other hand, was higher in βB1‐CTGF retinae (P = 0.023). Additionally, more glutamine synthetase signal was noted (P = 0.04). Although no alterations were observed regarding photoreceptors via immunohistology, a significant decrease of Rhodopsin (P = 0.003) and Opsin mRNA (P = 0.03) was noted. We therefore assume that the βB1‐CTGF mouse could serve as an excellent model for better understanding the pathomechanisms in POAG.  相似文献   

17.
We examined whether regenerating axons from adult rat ganglion cells are able to recognize their appropriate target region in vitro. Explants from adult rat retina were cocultured with embryonic sagittal midbrain slices in Matrigel®. The midbrain sections contained the superior colliculus, the main target for retinal ganglion cell axons in rats, and the inferior colliculus. We observed a statistically significant preference of both temporal and nasal retinal axons to grow toward their appropriate target region (anterior and posterior superior colliculus, respectively). No preferential growth of retinal ganglion cell axons was detected in controls, for which retinal explants were cultured on their own. When retinal ganglion cell axons were given a choice between superior colliculus and inferior colliculus, axons from nasal retina preferentially grew toward the posterior superior colliculus and avoided the inferior colliculus. In contrast, temporal axons in the same assay did not show preference for either of the colliculi. These findings suggest that regenerating axons from adult rat retina are able to recognize target-specific guidance cues released from embryonic midbrain targets in vitro. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 379–387, 1998  相似文献   

18.
Neurons receive inputs through their multiple branched dendrites and pass this information on to the next neuron via long axons, which branch within the target. The shape the neuron acquires is thus the key to its proper functioning in the neural circuit in which it participates. Both axons and dendrites grow in a directed fashion to their target partner neurons by responding to a large number of molecular cues in the milieu through which they extend. They then go through the process of synaptogenesis, first choosing a neuron on which to synapse, and then the appropriate subcellular location. How a neuron acquires its unique shape, establishes and modifies appropriate synaptic connectivity, and the molecular signals involved, are key questions in developmental neurobiology. Such questions of nervous system wiring are being pursued actively with a variety of different animal models and neuron types, each with its own unique advantages. Among these, the developing retinal ganglion cell (RGC) of the South African clawed frog, Xenopus laevis, has proven particularly fruitful for revealing the secrets of how axons and dendrites acquire their final morphology and connectivity. In this review, we describe how this system can be used to understand the multiple molecular events that instruct the incorporation of RGCs into the neural circuit that controls vision.  相似文献   

19.
Excessive activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) by free-radical damaged DNA mediates necrotic cell death in injury models of cerebral ischemia-reperfusion and excitotoxicity. We recently reported that secondary retinal ganglion cell (RGC) death following rat optic nerve (ON) transection is mainly apoptotic and can significantly but not entirely be blocked by caspase inhibition. In the present study, we demonstrate transient, RGC-specific PARP activation and increased retinal PARP expression early after ON axotomy. In addition, intravitreal injections of 3-aminobenzamide blocked PARP activation in RGCs and resulted in an increased number of surviving RGCs when compared to control animals 14 days after ON transection. These data indicate that secondary degeneration of a subset of axotomized RGCs results from a necrotic-type cell death mediated by PARP activation and increased PARP expression. Furthermore, PARP inhibition may constitute a relevant strategy for clinical treatment of traumatic brain injury.  相似文献   

20.
Marina N  Bull ND  Martin KR 《Nature protocols》2010,5(10):1642-1651
We have developed a fast, reliable and easily reproducible semiautomated quantitative damage grading scheme to assess axonal loss in the optic nerve after inducing ocular hypertension using a laser glaucoma model in adult rats. This targeted sampling method has been validated against complete axon counts, and compares favorably with a conventional, random sampling, semiquantitative method. In addition, we present a standardized method to quantify axons in a semiautomated way, using freely available ImageJ software, and describe in detail the method used to induce glaucoma. Our techniques can be easily implemented in any laboratory, thanks to the public availability of the software and the simplicity of the method. Depending on the number of animals used in a particular study, the whole process from experimental elevation of intraocular pressure to tissue processing and data analysis should take ~40 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号