首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glaucoma is conventionally defined as a chronic optic neuropathy characterized by progressive loss of retinal ganglion cells (RGCs) and optic nerve fibers. Although glaucoma is often associated with elevated intraocular pressure (IOP), significant IOP reduction does not prevent progression of the disease in some glaucoma patients. Thus, exploring IOP-independent mechanisms of RGC loss is important. We describe chronic systemic administration of aldosterone and evaluate its effect on RGCs in rat. Aldosterone was administered via an osmotic minipump that was implanted subcutaneously into the mid-scapular region. Although systemic administration of aldosterone caused RGC loss associated with thinning of the retinal nerve fiber layer without elevated IOP, the other cell layers appeared to be unaffected. After chronic administration of aldosterone, RGC loss was observed at 2 weeks in the peripheral retina and at 4 weeks in the central retina. However, administration of mineralocorticoid receptor blocker prevented RGC loss. These results demonstrate aldosterone is a critical mediator of RGC loss that is independent of IOP. We believe this rat normal-tension glaucoma (NTG) animal model not only offers a powerful system for investigating the mechanism of neurodegeneration in NTG, but can also be used to develop therapies directed at IOP-independent mechanisms of RGC loss.  相似文献   

2.
Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision due to glaucoma is caused by the selective death of retinal ganglion cells (RGCs). Treatments for glaucoma, limited to drugs or surgery to lower intraocular pressure (IOP), are insufficient. Therefore, a pressing medical need exists for more effective therapies to prevent vision loss in glaucoma patients. In this in vivo study, we demonstrate that systemic administration of galantamine, an acetylcholinesterase inhibitor, promotes protection of RGC soma and axons in a rat glaucoma model. Functional deficits caused by high IOP, assessed by recording visual evoked potentials from the superior colliculus, were improved by galantamine. These effects were not related to a reduction in IOP because galantamine did not change the pressure in glaucomatous eyes and it promoted neuronal survival after optic nerve axotomy, a pressure-independent model of RGC death. Importantly, we demonstrate that galantamine-induced ganglion cell survival occurred by activation of types M1 and M4 muscarinic acetylcholine receptors, while nicotinic receptors were not involved. These data provide the first evidence of the clinical potential of galantamine as neuroprotectant for glaucoma and other optic neuropathies, and identify muscarinic receptors as potential therapeutic targets for preventing vision loss in these blinding diseases.  相似文献   

3.
Sigma receptors are Ca2+-sensitive, ligand-operated receptor chaperones at the mitochondrion-associated endoplasmic reticulum membrane. This study describes the effect of the sigma receptor 1 agonist pregnenolone sulfate on intraocular pressure (IOP) and sigma receptor 1 expression in rat retinas after chronic ocular hypertension. Chronic ocular hypertension was induced by occlusion of episcleral veins. Retinal histological sections were obtained to determine inner plexiform layer thickness and the number of cell bodies in the ganglion cell layer. Sigma receptor expression in rat retinas was analyzed by RT-PCR and Western blotting. Cauterization caused IOP to increase >73%, and the pressure was maintained for 2 months. A time-dependent loss of ganglion cells and retinal thickness occurred at elevated IOP. High IOP decreased sigma receptor 1 expression during the first week, but expression was increased at 8 weeks. Injected pregnenolone significantly decreased IOP, prevented ganglion cell loss, protected inner plexiform layer thickness, and increased sigma receptor 1 expression in episcleral vein-cauterized rats. Sigma receptors appear to be neuroprotective and potential targets for glaucoma therapeutics.  相似文献   

4.
Glaucoma is a leading cause of irreversible blindness worldwide and causes progressive visual impairment attributable to the dysfunction and death of retinal ganglion cells (RGCs). Progression of visual field damage is slow and typically painless. Thus, glaucoma is often diagnosed after a substantial percentage of RGCs has been damaged. To date, clinical interventions are mainly restricted to the reduction of intraocular pressure (IOP), one of the major risk factors for this disease. However, the lowering of IOP is often insufficient to halt or reverse the progress of visual loss, underlining the need for the development of alternative treatment strategies. Several lines of evidence suggest that axonal damage of RGCs occurs primary at the optic nerve head, where axons appear to be most vulnerable. Axonal injury leads to the functional loss of RGCs and subsequently induces the death of the neurons. However, the detailed molecular mechanism(s) underlying IOP-induced optic nerve injury remain poorly understood. Moreover, whether glaucoma pathophysiology is primarily axonal, glial, or vascular remains unclear. Therefore, protective strategies to prevent further axonal and subsequent soma degeneration are of great importance to limit the progression of sight loss. In addition, strategies that stimulate injured RGCs to regenerate and reconnect axons with their central targets are necessary for functional restoration. The present review provides an overview of the context of glaucoma pathogenesis and surveys recent findings regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways.  相似文献   

5.
Glaucoma is a neurodegenerative disease characterized by progressive loss of retinal ganglion cell axons and their cell bodies in the retina. Elevated intraocular pressure (IOP) is considered to be the major risk factor associated with the development of this neuropathy. Randomized controlled clinical trials have demonstrated that in some patients the disease progresses, even after lowering the IOP. Several researchers have devised ways to induce elevated IOP in the rat eye with the aim of impeding the flow of aqueous humour out of the eye. Chronic ocular hypertension in rats induces morphofunctional changes in the optic nerve head and retina. Death of ganglion cells is thought to follow an apoptotic pathway. Changes have also been reported in neuronal and non-neuronal cells, levels of cyclooxygenase, and nitric oxide synthase, endothelin 1 and brain derived neurotrophic factor. Other mechanisms include intracellular electrolyte imbalance, microglial phagocytosis and elevated glutamate levels. Neuroprotection is the treatment strategy by preventing neuronal death. Hypotensive drugs (beta-blockers, alpha-agonists and prostaglandins), Ca++ channel blockers, NMDA antagonists and nitric oxide synthase inhibitors have been used as neuroprotective drugs in experimental models of glaucoma.  相似文献   

6.
7.
Retinal ganglion cells (RGCs) axons are the signal carriers of visual information between retina and brain. Therefore, they play one of the important roles affected in many optic neurodegenerative diseases like glaucoma. Among the genetic risks associated with glaucoma, the E50K mutation in the Optineurin (OPTN) gene are known to result in glaucoma in the absence of increased intraocular pressure (IOP), whereas the relevant pathological mechanism and neurological issues remain to be further investigated. In this study, the OPTN (E50K) mutant mouse model was established through CRISPR/Cas9-mediated genome editing, and aging-related RGCs loss and the visual dysfunction were identified. In E50K mice 16 months old, the axonal transport decreased comparing to wild-type (WT) mice at the same age. Furthermore, results of electron microscopy demonstrated significant morphological anomaly of mitochondria in RGCs axons of young E50K mice 3 months old, and these changes were aggravated with age. These indicated that the damaged mitochondria-associated dysfunction of RGCs axon should play an etiological role in glaucoma as an age-related outcome of OPTN (E50K) mutation. The findings of this study have potential implications for the targeted prevention and treatment of NTG.Subject terms: Neuroscience, Medical research  相似文献   

8.
Because as many as half of glaucoma patients on intraocular pressure (IOP)-lowering therapy continue to experience optic nerve toxicity, it is imperative to find other effective therapies. Iron and calcium ions play key roles in oxidative stress, a hallmark of glaucoma. Therefore, we tested metal chelation by means of ethylenediaminetetraacetic acid (EDTA) combined with the permeability enhancer methylsulfonylmethane (MSM) applied topically on the eye to determine if this noninvasive treatment is neuroprotective in rat optic nerve and retinal ganglion cells exposed to oxidative stress induced by elevated IOP. Hyaluronic acid (HA) was injected into the anterior chamber of the rat eye to elevate the IOP. EDTA–MSM was applied topically to the eye for 3 months. Eyeballs and optic nerves were processed for histological assessment of cytoarchitecture. Protein–lipid aldehyde adducts and cyclooxygenase-2 (COX-2) were detected immunohistochemically. HA administration increased IOP and associated oxidative stress and inflammation. Elevated IOP was not affected by EDTA–MSM treatment. However, oxidative damage and inflammation were ameliorated as reflected by a decrease in formation of protein–lipid aldehyde adducts and COX-2 expression, respectively. Furthermore, EDTA–MSM treatment increased retinal ganglion cell survival and decreased demyelination of optic nerve compared with untreated eyes. Chelation treatment with EDTA–MSM ameliorates sequelae of IOP-induced toxicity without affecting IOP. Because most current therapies aim at reducing IOP and damage occurs even in the absence of elevated IOP, EDTA–MSM has the potential to work in conjunction with pressure-reducing therapies to alleviate damage to the optic nerve and retinal ganglion cells.  相似文献   

9.
《Autophagy》2013,9(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

10.
Wen-jian Lin  Hong-yu Kuang 《Autophagy》2014,10(10):1692-1701
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.  相似文献   

11.
Recent observations suggest that the vasoactive peptide endothelin-1 (ET-1) may be an important contributor to the etiology of glaucoma. ET-1 administration has been shown to produce optic nerve axonal loss and apoptosis of retinal ganglion cells. Ocular ET-1 levels are elevated in aqueous humor in response to elevated intraocular pressure both in glaucoma patients and in animal models of glaucoma; however, the precise mechanisms by which ET-1 mediates glaucomatous optic neuropathy are not clear. Presently we report that ET-1-mediated apoptosis was markedly attenuated in ETB receptor-deficient rats, suggesting a key role for ETB receptors in apoptosis of retinal ganglion cells by ET-1 treatment. Using virally transformed rat retinal ganglion cells (RGC-5 cells), we found that ET-1 (100 nmol/L) treatment produced apoptotic changes in these cells that was determined by flow cytometric analyses, release of mitochondrial cytochrome c to the cytosol, and increased phosphorylation of c-Jun N-terminal kinase. Pretreatment with the ETB-receptor antagonist BQ788 (1 micromol/L) was able to significantly attenuate ET-1-mediated apoptosis in RGC-5 cells. ET-1-mediated apoptotic changes in RGC-5 cells were associated with ETB-receptor activation and were accompanied by a significant upregulation of ETB-receptor expression. These studies suggest that ocular ET-1 acts through ETB receptors to mediate apoptosis of retinal ganglion cells, a key event in glaucoma and related optic neuropathies.  相似文献   

12.
The aim of this study was to examine the effects of timolol in an experimental model of elevated intraocular pressure (IOP). Three episcleral veins of rats with normal IOP were cauterized. Three months later we examined the effects on anterograde axonal transport from the retinal ganglion cells (RGCs) to the superior colliculus (SC) as well as on the number of neurons in the retinal ganglion layer (RGL). These parameters were also studied in a group of rats submitted to treatment with timolol after confirming that their IOP was still raised after two weeks. After the surgical procedure, the mean IOP of the experimental eyes increased to 33.5+/-1.06 mmHg (1.25 fold compared to the control group) and three months later the IOP remained significantly elevated; however, after a long period of treatment with timolol the IOP was 14.05+/-0.81 mmHg, similar to that of the control group. In the group with normal IOP, labelling with horseradish rabbit peroxidase (HRP) at 120 minutes and 24 hours postinjection showed continuous staining from the retina to the SC. In the experimental group the optic nerve head (ONH) was completely negative, although in the group treated with timolol there was partial block of axonal transport in the ONH, in which the staining was slightly more intense. The number of neurons in the RGL, counted by immunohistochemical labelling with Neu-N, showed that in eyes with normal and elevated IOP there were 423+/-11 neurons/mm(2) and 283+/-10 neurons/mm(2), respectively. After treatment with timolol the number of neurons (331+/-10 cells/mm(2) increased compared with elevated IOP eyes, although the number did not reach that of the control group. These results indicate that treatment with timolol, started two weeks after the surgical procedure, was partially neuroprotective because the loss of neurons in the RGL was lower than in untreated animals, though not sufficient to re-establish normal axonal transport.  相似文献   

13.
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.  相似文献   

14.
The eye contains numerous water channel proteins and the roles of AQPs (aquaporins) in the retina are blurred, especially under disease conditions. The purpose of this study was to investigate the expression of AQP9 gene and proteins affected by elevated IOP (intraocular pressure) in a rat model of glaucoma induced by intravitreous injection of hypertonic saline into the episcleral veins. The gene and protein expressions of AQP9 were investigated by real-time PCR and Western blotting. The immunoreactive expression of AQP9, AQP4 and GFAP (glial fibrillary acidic protein) in the optic nerve of rats exposed to experimentally elevated IOP was detected by immunofluorescence microscopy. The mRNA and protein expression levels of AQP9 were up-regulated in the retina of an animal model of glaucoma. The immunoreactivities of the AQP9, AQP4 and GFAP were also detected and increased in the optic nerve region. The expression of AQP9 was up-regulated in this glaucoma model and the immunoreactivities of the AQP4 and GFAP were also detected as co-localizing with AQP9 in the optic nerve region, indicating retina ganglion cells were surrounded by activated astrocytes. This may indicate that the injured neurons may rely on the astrocytes. The alterations of AQP expression may compensate the glaucomatous damage.  相似文献   

15.
Glaucoma is one of the leading causes of irreversible blindness that is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs, and the loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP). Brimonidine (BMD) is an α2-adrenergic receptor agonist and it is commonly used in a form of eye drops to lower IOP in glaucoma patients. Recent studies have suggested that BMD has direct protective effects on RGCs involving IOP-independent mechanisms, but it is still controversial. In the present study, we examined the effects of BMD in EAAC1-deficient (KO) mice, an animal model of normal tension glaucoma. BMD caused a small decrease in IOP, but sequential in vivo retinal imaging and electrophysiological analysis revealed that treatment with BMD was highly effective for RGC protection in EAAC1 KO mice. BMD suppressed the phosphorylation of the N-methyl-D-aspartate receptor 2B (NR2B) subunit in RGCs in EAAC1 KO mice. Furthermore, in cultured Müller glia, BMD stimulated the production of several neurotrophic factors that enhance RGC survival. These results suggest that, in addition to lowering IOP, BMD prevents glaucomatous retinal degeneration by stimulating multiple pathways including glia–neuron interactions.Glaucoma is one of the leading causes of vision loss in the world. It is estimated that glaucoma will affect more than 80 million individuals worldwide by 2020, with at least 6–8 million individuals becoming bilaterally blind.1 The disease is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, which are usually associated with elevated intraocular pressure (IOP). On the other hand, normal tension glaucoma (NTG) is a subtype of glaucoma that presents with statistically normal IOP. The prevalence of NTG is reported to be higher among the Japanese than among Caucasians.2 These findings suggest a possibility that non-IOP-dependent factors may contribute to disease progression of glaucoma, especially in the context of NTG.3, 4 For example, an excessively high extracellular concentration of glutamate chronically activates glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptors, and allows calcium entry into the cell causing an uncontrolled elevation of intracellular calcium levels. This process is thought to be one of the causes of RGC death.3, 4, 5 The glutamate transporter (GLT) is the only mechanism for removal of glutamate from the extracellular fluid in the retina.3, 6, 7 In the inner plexiform layer where synapses exist across RGCs, at least three transporters are involved in this task: GLT-1 located in the bipolar cell terminals; excitatory amino-acid carrier 1 (EAAC1) in RGCs; and glutamate/aspartate transporter (GLAST) in Müller glial cells.3, 7, 8 We previously reported that EAAC1 and GLAST knockout (KO) mice show progressive RGC loss and optic nerve degeneration without elevated IOP, and not only glutamate neurotoxicity but also oxidative stress is involved in its mechanism.3, 8, 9, 10 In adult EAAC1 and GLAST KO mice, lipid hydroperoxides were increased and glutathione concentrations were decreased in retinas, suggesting the involvement of oxidative stress in RGC loss. In addition, cultured RGCs prepared from EAAC1 KO mice were more vulnerable to oxidative stress.3 Oxidative stress has been proposed to contribute to retinal damage in various eye diseases including glaucoma and age-related macular degeneration.11, 12 Taken together with the downregulation of GLTs and glutathione levels observed in glaucoma patients,13 these mice seem to be useful as the animal models of NTG.Brimonidine (BMD) is a selective α2-adrenergic receptor agonist that lowers IOP by reducing the production of aqueous humor and facilitating its exit via the trabecular meshwork.14 Recent studies have shown that BMD protects RGCs from glutamate neurotoxicity, oxidative stress and hypoxia in vitro.15, 16 In addition, BMD provides neuroprotective effects in various animal models of optic neuropathy including experimental glaucoma, ischemia, oxidative stress and optic nerve injury.17, 18, 19 BMD may exert its neuroprotective effects via the upregulation of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF)20 and basic fibroblast growth factor (bFGF),21, 22 in RGCs. Thus, the neuroprotective effects of BMD seem to be, at least partly, through IOP-independent factors, but the detailed mechanism are still unknown. Fujita et al.23 recently reported that topical administration of BMD promotes axon regeneration after optic nerve injury. BMD increased the expression of the tropomyosin receptor kinase B (TrkB), a high-affinity BDNF receptor, in the mouse retina. We previously reported that BDNF-TrkB signaling in Müller glial cells have important roles in the production of trophic factors including BDNF and bFGF, and in the protection from glutamate-induced RGC death and drug-induced photoreceptor death.24 Systemically administered α2-adrenergic agonists are known to activate selectively extracellular signal-regulated kinases in Müller cells in vivo.25 These results suggest a possibility that BMD may stimulate the production of trophic factors in not only RGCs but also in Müller cells. In the present study, we show that BMD prevents glaucomatous retinal degeneration in EAAC1 KO mice, an animal model of NTG, and we report novel IOP-independent pathways for BMD-mediated neuroprotection that involve NMDA receptors and glia–neuron interaction.  相似文献   

16.
Glaucoma is a neurodegenerative disorder that is generally accepted as the main cause of vision loss. In this study, we tested the hypothesis that laminin α4 (LAMA4) is implicated in glaucoma development by controlling apoptosis of retinal ganglion cells (RGCs) through the mitogen-activated protein kinase (MAPK) signaling pathway. Expression profiles and genes associated with glaucoma were searched to determine the objective gene. Intraocular pressure (IOP) rats model were established and IOP was measured. The mRNA and protein expression of LAMA4, JNK, p38 MAPK, ERK, Bcl-2, Bax, Caspase-9, and p53 was determined in concert with the treatment of H2O2, si-NC, or si-LAMA4 in cultured RGCs. Viability of RGCs, reactive oxygen species (ROS) and cell apoptosis was also measured. LAMA4 was selected as the study object because of its significant difference in two expression profiles. IOP of rats with glaucoma increased significantly after model establishment, and the LAMA4 protein expression in retinal tissue of rats with glaucoma was elevated. Down-regulation of LAMA4 could inhibit the mRNA and protein expression of LAMA4, JNK, p38 MAPK, ERK, Bax, Caspase-9, and p53, as well as restrain the apoptosis and ROS of RGCs, but improve Bcl-2 expression and viability of RGCs. Collectively, the obtained data supported that downregulated LAMA4 might reduce the oxidative stress-induced apoptosis of glaucoma RGCs by inhibiting the activation of the MAPK signaling pathway.  相似文献   

17.

Background

Glaucoma, a leading cause of blindness worldwide, is an optic neuropathy commonly associated with elevated intraocular pressure (IOP). The major goals of glaucoma treatments are to lower IOP and protect retinal ganglion cells. It has been revealed recently that adenosine and adenosine receptors (ARs) have important roles in IOP modulation and neuroprotection.

Scope of review

This article reviews recent studies on the important roles of adenosine and ARs in aqueous humor formation and outflow facility, IOP and retinal neuroprotection.

Major conclusions

Adenosine and several adenosine derivatives increase and/or decrease IOP via A2A AR. Activation of A1 AR can reduce outflow resistance and thereby lower IOP, A3 receptor antagonists prevent adenosine-induced activation of Cl channels of the ciliary non-pigmented epithelial cells and thereby lower IOP. A1 and A2A agonists can reduce vascular resistance and increase retina and optic nerve head blood flow. A1 agonist and A2A antagonist can enhance the recovery of retinal function after ischemia attack. Adenosine acting at A3 receptors can attenuate the rise in calcium and retinal ganglion cells death accompanying P2X(7) receptor activation.

General significance

Evidence suggested that the adenosine system is one of the potential target systems for therapeutic approaches in glaucoma.  相似文献   

18.
Optic nerve atrophy caused by abnormal intraocular pressure (IOP) remains the most common cause of irreversible loss of vision worldwide. The aim of this study was to determine whether topically applied IOP-lowering eye drugs affect retinal ganglion cells (RGCs) and retinal metabolism in a rat model of optic neuropathy. IOP was elevated through cauterization of episcleral veins, and then lowered either by the daily topical application of timolol, timolol/travoprost, timolol/dorzolamide, or timolol/brimonidine, or surgically with sectorial iridectomy. RGCs were retrogradely labeled 4 days prior to enucleation, and counted. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption ionization mass spectrometry, Western blotting, and immunohistochemistry allowed the identification of IOP-dependent proteomic changes. Genomic changes were scrutinized using microarrays and qRT-PCR. The significant increase in IOP induced by episcleral vein cauterization that persisted until 8 weeks of follow-up in control animals (p<0.05) was effectively lowered by the eye drops (p<0.05). As anticipated, the number of RGCs decreased significantly following 8 weeks of elevated IOP (p<0.05), while treatment with combination compounds markedly improved RGC survival (p<0.05). 2D-PAGE and Western blot analyses revealed an IOP-dependent expression of crystallin cry-βb2. Microarray and qRT-PCR analyses verified the results at the mRNA level. IHC demonstrated that crystallins were expressed mainly in the ganglion cell layer. The data suggest that IOP and either topically applied antiglaucomatous drugs influence crystallin expression within the retina. Neuronal crystallins are thus suitable biomarkers for monitoring the progression of neuropathy and evaluating any neuroprotective effects.  相似文献   

19.
青光眼是由视网膜神经节细胞(Retinal ganglion cells,RGCs)死亡引起的一种疾病,最终能导致失明。近年来,关于高眼压(elevated intraocular pressure,IOP)引发的视网膜的特定分子途径等方面的信息逐渐增多。青光眼中视网膜神经节细胞的状态取决于视网膜神经节细胞促存活和促死亡途径之间的平衡,而有关这些反应的具体机制有较多的研究,但仍只能解释部分现象。本文综述了关于视网膜神经节细胞的凋亡、凋亡通路途径及可能引发损伤条件的最新研究进展。  相似文献   

20.
The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals--but not all--develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号