首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The melastatin-related transient receptor potential channel TRPM2 is a Ca(2+)-permeable channel that is activated by H(2)O(2), and the Ca(2+) influx through TRPM2 mediates cell death. However, the responsible oxidants for TRPM2 activation remain to be identified. In the present study, we investigated the involvement of hydroxyl radical on TRPM2 activation in TRPM2-expressing HEK293 cells and the rat beta-cell line RIN-5F. In both cell types, H(2)O(2) induced Ca(2+) influx in a concentration-dependent manner. However, the addition of hydroxyl radical, which was produced by mixing FeSO(4) and H(2)O(2), to the cells, did not increase intracellular Ca(2+) concentration. Interestingly, when H(2)O(2) was added to the cells under intracellular Fe(2+)-accumulated conditions, Ca(2+) influx was markedly enhanced compared to H(2)O(2) alone. In addition, the H(2)O(2)-induced Ca(2+) influx was reduced by hydroxyl radical scavengers and an iron chelator. Under intracellular Fe(2+)-accumulated conditions, H(2)O(2)-induced RIN-5F cell death through TRPM2 activation was also markedly enhanced. Hydroxyl radical scavengers and an iron chelator suppressed the RIN-5F cell death by H(2)O(2). These results strongly suggest that the intracellular hydroxyl radical plays a key role in the activation of TRPM2 during H(2)O(2) treatment, and TRPM2 activation mediated by hydroxyl radical is implicated in H(2)O(2)-induced cell death in the beta-cell line RIN-5F.  相似文献   

2.
TRPM2, a member of the transient receptor potential (TRP) superfamily, is a Ca(2+)-permeable channel activated by oxidative stress or tumor necrosis factoralpha involved in susceptibility to cell death. TRPM2 activation is dependent on the level of intracellular Ca(2+). We explored whether calmodulin (CaM) is the Ca(2+) sensor for TRPM2. HEK 293T cells were transfected with TRPM2 and wild type CaM or mutant CaM (CaM(MUT)) with substitutions of all four EF hands. Treatment of cells expressing TRPM2 with H(2)O(2) or tumor necrosis factor alpha resulted in a significant increase in intracellular calcium ([Ca(2+)](i)). This was not affected by coexpression of CaM, suggesting that endogenous CaM levels are sufficient for maximal response. Cotransfection of CaM(MUT) with TRPM2 dramatically inhibited the increase in [Ca(2+)](i), demonstrating the requirement for CaM in TRPM2 activation. Immunoprecipitation confirmed direct interaction of CaM and CaM(MUT) with TRPM2, and the Ca(2+) dependence of this association. CaM bound strongly to the TRPM2 N terminus (amino acids 1-730), but weakly to the C terminus (amino acids 1060-1503). CaM binding to an IQ-like motif (amino acids 406-416) in the TRPM2 N terminus was demonstrated utilizing gel shift, immunoprecipitation, biotinylated CaM overlay, and pull-down assays. A substitution mutant of the IQ-like motif of TRPM2 (TRPM2-IQ(MUT1)) reduced but did not eliminate CaM binding to TRPM2, suggesting the presence of at least one other CaM binding site. The functional importance of the TRPM2 IQ-like motif was demonstrated by treatment of TRPM2-IQ(MUT1)-expressing cells with H(2)O(2). The increase in [Ca(2+)](i) observed with wild type TRPM2 was absent and cell viability was preserved. These data demonstrate the requirement for CaM in TRPM2 activation. They suggest that Ca(2+) entering through TRPM2 enhances interaction of CaM with TRPM2 at the IQ-like motif in the N terminus, providing crucial positive feedback for channel activation.  相似文献   

3.
Lee HJ  Ban JY  Seong YH 《Life sciences》2005,78(3):294-300
The present study was performed to examine the neuroprotective effects of 5-hydroxytryptamine (5-HT)(3) receptor antagonists against hydrogen peroxide (H(2)O(2))-induced neurotoxicity using cultured rat cortical neurons. Pretreatment of 5-HT(3) receptor antagonists, tropanyl-3,5-dichlorobenzoate (MDL72222, 0.1 and 1 microM) and N-(1-azabicyclo[2.2.2.]oct-3-yl)-6-chloro-4-ethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride (Y25130, 0.5 and 5 microM), significantly inhibited the H(2)O(2) (100 microM)-induced neuronal cell death as assessed by a MTT assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. The protective effects of MDL72222 (1 microM) and Y25130 (5 microM) were completely blocked by the simultaneous treatment with 100 microM 1-phenylbiguanide, a 5-HT(3) receptor agonist, indicating that the protective effects of these compounds were due to 5-HT(3) receptor blockade. In addition, MDL72222 (1 microM) and Y25130 (5 microM) inhibited the H(2)O(2) (100 microM)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)) and glutamate release, generation of reactive oxygen species (ROS), and caspase-3 activity. These results suggest that the activation of the 5-HT(3) receptor may be partially involved in H(2)O(2)-induced neurotoxicity, by membrane depolarization for Ca(2+) influx. Therefore, the blockade of 5-HT(3) receptor with MDL72222 and Y25130 may ameliorate the H(2)O(2)-induced neurotoxicity by interfering with the increase of [Ca(2+)](c), and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.  相似文献   

4.
The transient receptor potential M2 channel (TRPM2) is the Ca(2+)-permeable cation channel controlled by cellular redox status via β-NAD(+) and ADP-ribose (ADPR). TRPM2 activity has been reported to underlie susceptibility to cell death and biological processes such as inflammatory cell migration and insulin secretion. However, little is known about the intracellular mechanisms that regulate oxidative stress-induced cell death via TRPM2. We report here a molecular and functional interaction between the TRPM2 channel and EF-hand motif-containing protein EFHC1, whose mutation causes juvenile myoclonic epilepsy (JME) via mechanisms including neuronal apoptosis. In situ hybridization analysis demonstrates TRPM2 and EFHC1 are coexpressed in hippocampal neurons and ventricle cells, while immunoprecipitation analysis demonstrates physical interaction of the N- and C-terminal cytoplasmic regions of TRPM2 with the EFHC1 protein. Coexpression of EFHC1 significantly potentiates hydrogen peroxide (H(2)O(2))- and ADPR-induced Ca(2+) responses and cationic currents via recombinant TRPM2 in HEK293 cells. Furthermore, EFHC1 enhances TRPM2-conferred susceptibility of HEK293 cells to H(2)O(2)-induced cell death, which is reversed by JME mutations. These results reveal a positive regulatory action of EFHC1 on TRPM2 activity, suggesting that TRPM2 contributes to the expression of JME phenotypes by mediating disruptive effects of JME mutations of EFHC1 on biological processes including cell death.  相似文献   

5.
Overproduction of reactive oxygen species is one of the major causes of cell death in ischemic-reperfusion (I/R) injury. In I/R animal models, electron microscopy (EM) has shown mixed apoptotic and necrotic characteristics in the same cardiomyocyte. The present study shows that H(2)O(2) activates both apoptotic and necrotic machineries in the same myocyte and that the ultrastructure seen using EM is very similar to that in I/R animal studies. The apoptotic component is caused by the activation of clotrimazole-sensitive, NAD(+)/ADP ribose/poly(ADP-ribose) polymerase (PARP)-dependent transient receptor potential M2 (TRPM2) channels, which induces mitochondrial [Na(+)](m) (and [Ca(2+)](m)) overload, resulting in mitochondrial membrane disruption, cytochrome c release, and caspase 3-dependent chromatin condensation/fragmentation. The necrotic component is caspase 3-independent and is caused by PARP-induced [ATP](i)/NAD(+) depletion, resulting in membrane permeabilization. Inhibition of either TRPM2 or PARP activity only partially inhibits cell death, while inhibition of both completely prevents the ultrastructural changes and myocyte death.  相似文献   

6.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) play key roles in physiological and pathological responses in cardiac myocytes. The mechanisms whereby H(2)O(2)-modulated phosphorylation pathways regulate the endothelial isoform of nitric oxide synthase (eNOS) in these cells are incompletely understood. We show here that H(2)O(2) treatment of adult mouse cardiac myocytes leads to increases in intracellular Ca(2+) ([Ca(2+)](i)), and document that activity of the L-type Ca(2+) channel is necessary for the H(2)O(2)-promoted increase in sarcomere shortening and of [Ca(2+)](i). Using the chemical NO sensor Cu(2)(FL2E), we discovered that the H(2)O(2)-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca(2+) channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase kinase 1/2 (MEK1/2). Moreover, H(2)O(2)-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both an increase in [Ca(2+)](i) as well as the activation of protein kinase C (PKC). We also found that H(2)O(2)-promoted cardiac myocyte eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca(2+) channel blocker nifedipine. We have previously shown that kinase Akt is also involved in H(2)O(2)-promoted eNOS phosphorylation. Here we present evidence documenting that H(2)O(2)-promoted Akt phosphorylation is dependent on activation of the L-type Ca(2+) channel, but is independent of PKC. These studies establish key roles for Ca(2+)- and PKC-dependent signaling pathways in the modulation of cardiac myocyte eNOS activation by H(2)O(2).  相似文献   

7.
We have previously shown that when annexin V is present during the execution of a cell death program, apoptosis is delayed. This is reflected by the inhibition of DNA cleavage and of the release of apoptotic membrane particles, and by reduction of the proteolytic processing of caspase-3. Here, we have studied the mechanism(s) through which annexin V counteracts apoptosis in the human CEM T cell line. The degree of apoptosis inhibition was associated with an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). Reduction of the extracellular Ca(2+) concentration by EGTA abolished the anti-apoptotic effect, suggesting that annexin V favors Ca(2+) influx and that Ca(2+) acts as an inhibitor rather than an activator of apoptosis in CEM T cells. The effects on apoptosis and [Ca(2+)](i) of several modified annexins with different electrophysiological properties indicate that the N-terminal domain of annexin V is necessary for the Ca(2+)-dependent anti-apoptotic action of annexin V. These results suggest that annexin V regulates membrane Ca(2+) permeability and is protective against apoptosis by increasing [Ca(2+)](i) in CEM T cells.  相似文献   

8.
9.
Necrosis is associated with an increase in plasma membrane permeability, cell swelling, and loss of membrane integrity with subsequent release of cytoplasmic constituents. Severe redox imbalance by overproduction of reactive oxygen species is one of the main causes of necrosis. Here we demonstrate that H(2)O(2) induces a sustained activity of TRPM4, a Ca(2+)-activated, Ca(2+)-impermeant nonselective cation channel resulting in an increased vulnerability to cell death. In HEK 293 cells overexpressing TRPM4, H(2)O(2) was found to eliminate in a dose-dependent manner TRPM4 desensitization. Site-directed mutagenesis experiments revealed that the Cys(1093) residue is crucial for the H(2)O(2)-mediated loss of desensitization. In HeLa cells, which endogenously express TRPM4, H(2)O(2) elicited necrosis as well as apoptosis. H(2)O(2)-mediated necrosis but not apoptosis was abolished by replacement of external Na(+) ions with sucrose or the non-permeant cation N-methyl-d-glucamine and by knocking down TRPM4 with a shRNA directed against TRPM4. Conversely, transient overexpression of TRPM4 in HeLa cells in which TRPM4 was previously silenced re-established vulnerability to H(2)O(2)-induced necrotic cell death. In addition, HeLa cells exposed to H(2)O(2) displayed an irreversible loss of membrane potential, which was prevented by TRPM4 knockdown.  相似文献   

10.
Calcium signaling in cancer and vitamin D   总被引:3,自引:0,他引:3  
Calcium signals induced by the Ca(2+) regulatory hormone 1,25(OH)(2)D(3) may determine the fate of the cancer cell. We have shown that, in breast cancer cell lines, 1,25(OH)(2)D(3) induces a sustained increase in concentration of intracellular Ca(2+) ([Ca(2+)](i)) by depleting the endoplasmic reticulum (ER) Ca(2+) stores via inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel and activating Ca(2+) entry from the extracellular space via voltage-insensitive Ca(2+) channels. In normal cells, 1,25(OH)(2)D(3) triggered a transient Ca(2+) response via activation of voltage-dependent Ca(2+) channels, which were absent in breast cancer cells. The normal cells, but not breast cancer cells, expressed the Ca(2+) binding/buffering protein calbindin-D(28k) and were capable of buffering [Ca(2+)](i) increases induced by a mobilizer of the ER Ca(2+) stores, thapsigargin, or a Ca(2+) ionophore, ionomycin. The 1,25(OH)(2)D(3)-induced sustained increase in [Ca(2+)](i) in breast cancer cells was associated with induction of apoptotic cell death, whereas the transient [Ca(2+)](i) increase in normal cells was not. The forced expression of calbindin-D(28k) in cytosol or increase in the cytosolic Ca(2+) buffering capacity with the cell-permeant Ca(2+) buffer BAPTA prevented induction of apoptosis with 1,25(OH)(2)D(3) in cancer cells. The sustained increase in [Ca(2+)](i) in breast cancer cells was associated with activation of the Ca(2+)-dependent apoptotic proteases, mu-calpain and caspase-12, as evaluated with antibodies to active (cleaved) forms of the enzymes and the fluorogenic peptide substrates. Selective inhibition of the Ca(2+) binding sites of mu-calpain decreased apoptotic indices in the cancer cells treated with 1,25(OH)(2)D(3), thapsigargin, or ionomycin. The mu-calpain activation preceded expression/activation of caspase-12, and calpain was required for activation/cleavage of caspase-12. Certain non-calcemic vitamin D analogs (e.g., EB 1089) triggered a sustained [Ca(2+)](i) increase, activated Ca(2+)-dependent apoptotic proteases, and induced apoptosis in breast cancer cells in a fashion similar to that of 1,25(OH)(2)D(3). The 1,25(OH)(2)D(3)-induced transient Ca(2+) response in normal mammary epithelial cells was not accompanied by activation of mu-calpain and caspase-12. In conclusion, we have identified the novel apoptotic pathway in breast carcinoma cells treated with 1,25(OH)(2)D(3): increase in [Ca(2+)](i)-->mu-calpain activation-->caspase-12 activation-->apoptosis. Our results support the hypothesis that 1,25(OH)(2)D(3) directly activates this apoptotic pathway by inducing a sustained increase in [Ca(2+)](i). Differences of Ca(2+) regulatory mechanisms in cancer versus normal cells seem to allow 1,25(OH)(2)D(3) and vitamin D analogs to induce Ca(2+)-mediated apoptosis selectively in breast cancer cells. Thus, deltanoids may prove to be useful in the treatment of tumors susceptible to induction of Ca(2+)-mediated apoptosis.  相似文献   

11.
The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca(2+)-permeable cation channel that is activated by hydrogen peroxide (H(2)O(2)) as a consequence of oxidative stress although the channel activation by H(2)O(2) appears to represent a cell-specific process in cells with endogenous expression of TRPM2. Flufenamic acid (FA) is a non-steroidal anti-inflammatory compound. Whether H(2)O(2) activates or FA inhibits TRPM2 channels in Chinese hamster ovary (CHO) cell is currently unknown. Due to lack of known antogonists of this channel, we demonstrate in CHO cells that FA inhibits TRPM2 activated by extracellular H(2)O(2). CHO cells were transfected with cDNA coding for TRPM2. Cells were studied with the conventional whole-cell patch clamp technique. The intracellular solution used EDTA (10 mM) as chelator for Ca(2+) and heavy metal ions. H(2)O(2) (10 mM) and FA (0.1 mM) were applied extracellularly. Non-selective cation currents were consistently induced by H(2)O(2). The time cause of H(2)O(2) effects was characterized by a delay of 2-5 min and a slow current induction to reach a plateau. The H(2)O(2)- induced inward current was effectively inhibited by 0.1 mM FA applied extracellularly. In conclusion, we have demonstrated that FA is an effective antogonist of TRPM2 channels and H(2)O(2)activated currents in CHO cells. FA in CHO cells may be considered, at best, a starting point for the development of TRPM2 channel blockers.  相似文献   

12.
Studies have shown salutary effects of 17beta-estradiol following trauma-hemorrhage on different cell types. 17beta-Estradiol also induces improved circulation via relaxation of the aorta and has an anti-apoptotic effect on endothelial cells. Because mitochondria play a pivotal role in apoptosis, we hypothesized that 17beta-estradiol will maintain mitochondrial function and will have protective effects against H(2)O(2)-induced apoptosis in endothelial cells. Endothelial cells were isolated from rats' aorta and cultured in the presence or absence of H(2)O(2), a potent inducer of apoptosis. In additional studies, endothelial cells were pretreated with 17beta-estradiol. Flow cytometry analysis revealed H(2)O(2)-induced apoptosis in 80.9% of endothelial cells; however, prior treatment of endothelial cells with 17beta-estradiol resulted in an approximately 40% reduction in apoptosis. This protective effect of 17beta-estradiol was abrogated when endothelial cells were cultured in the presence ICI-182780, indicating the involvement of estrogen receptor (ER). Fluorescence microscopy revealed a 17beta-estradiol-mediated attenuation of H(2)O(2)-induced mitochondrial condensation. Western blot analysis demonstrated that H(2)O(2)-induced cytochrome c release from mitochondrion to cytosol and the activation of caspase-9 and -3 were decreased by 17beta-estradiol. These findings suggest that 17beta-estradiol attenuated H(2)O(2)-induced apoptosis via ER-dependent activation of caspase-9 and -3 in rat endothelial cells through mitochondria.  相似文献   

13.
LTRPC2 is a cation channel recently reported to be activated by adenosine diphosphate-ribose (ADP-ribose) and NAD. Since ADP-ribose can be formed from NAD and NAD is elevated during oxidative stress, we studied whole cell currents and increases in the intercellular free calcium concentration ([Ca(2+)](i)) in long transient receptor potential channel 2 (LTRPC2)-transfected HEK 293 cells after stimulation with hydrogen peroxide (H(2)O(2)). Cation currents carried by monovalent cations and Ca(2+) were induced by H(2)O(2) (5 mm in the bath solution) as well as by intracellular ADP-ribose (0.3 mm in the pipette solution) but not by NAD (1 mm). H(2)O(2)-induced currents developed slowly after a characteristic delay of 3-6 min and receded after wash-out of H(2)O(2). [Ca(2+)](i) was rapidly increased by H(2)O(2) in LTRPC2-transfected cells as well as in control cells; however, in LTRPC2-transfected cells, H(2)O(2) evoked a second delayed rise in [Ca(2+)](i). A splice variant of LTRPC2 with a deletion in the C terminus (amino acids 1292-1325) was identified in neutrophil granulocytes. This variant was stimulated by H(2)O(2) as the wild type. However, it did not respond to ADP-ribose. We conclude that activation of LTRPC2 by H(2)O(2) is independent of ADP-ribose and that LTRPC2 may mediate the influx of Na(+) and Ca(2+) during oxidative stress, such as the respiratory burst in granulocytes.  相似文献   

14.
Increased extracellular Ca(2+) ([Ca(2+)](o)) can damage tissues, but the molecular mechanisms by which this occurs are poorly defined. Using HEK 293 cell lines that stably overexpress the Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor, we demonstrate that activation of the CaR leads to apoptosis, which was determined by nuclear condensation, DNA fragmentation, caspase-3 activation, and increased cytosolic cytochrome c. This CaR-induced apoptotic pathway is initiated by CaR-induced accumulation of ceramide which plays an important role in inducing cell death signals by distinct G protein-independent signaling pathways. Pretreatment of wild-type CaR-expressing cells with pertussis toxin inhibited CaR-induced [(3)H]ceramide formation, c-Jun phosphorylation, and caspase-3 activation. The ceramide accumulation, c-Jun phosphorylation, and caspase-3 activation by the CaR can be abolished by sphingomyelinase and ceramide synthase inhibitors in different time frames. Cells that express a nonfunctional mutant CaR that were exposed to the same levels of [Ca(2+)](o) showed no evidence of activation of the apoptotic pathway. In conclusion, we report the involvement of the CaR in stimulating programmed cell death via a pathway involving GTP binding protein alpha subunit (Galpha(i))-dependent ceramide accumulation, activation of stress-activated protein kinase/c-Jun N-terminal kinase, c-Jun phosphorylation, caspase-3 activation, and DNA cleavage.  相似文献   

15.
Menthol, a naturally occurring compound from peppermint oil, binds and activates the TRPM8 Ca(2+)-permeable channel that exhibits abnormal expression patterns in prostate cancer, suggesting that TRPM8 links Ca(2+) transport pathways to tumor biology. We thus investigated the cellular responses of prostate cancer cells to menthol. Here we found that menthol increases [Ca(2+)](i) via Ca(2+) influx mechanism(s) independent of TRPM8 in PC-3 cells. We demonstrated that menthol induces cell death at supramillimolar concentrations in PC-3 cells and the cell death is not suppressed by low extracellular Ca(2+) condition which indicates that menthol-induced cell death is not associated with Ca(2+) influx pathways. In addition, we showed that menthol increases a phosphorylated form of c-jun N-terminal kinase (JNK) in PC-3 cells through TRPM8-independent mechanisms. Thus, our data indicate that there is an apparent lack of causality between TRPM8 activation and menthol-induced cell death and that menthol can regulate TRPM8-independent Ca(2+)-transport and cellular processes.  相似文献   

16.
Diospyrin diethylether (D7), a bisnaphthoquinonoid derivative, exhibited an oxidative stress-dependent apoptosis in several human cancer cells and tumor models. The present study was aimed at evaluation of the increase in cytosolic calcium [Ca(2+)](c) leading to the apoptotic cell death triggered by D7 in MCF7 human breast carcinoma cells. A phosphotidylcholine-specific phospholipase C (PC-PLC) inhibitor, viz. U73122, and an antioxidant, viz. N-acetylcysteine, could significantly prevent the D7-induced rise in [Ca(2+)](c) and PC-PLC activity. Using an endoplasmic reticulum (ER)-Ca(2+) mobilizer (thapsigargin) and an ER-IP3R antagonist (heparin), results revealed ER as a major source of [Ca(2+)](c) which led to the activation of calpain and caspase12, and cleavage of fodrin. These effects including apoptosis were significantly inhibited by the pretreatment of Bapta-AM (a cell permeable Ca(2+)-specific chelator), or calpeptin (a calpain inhibitor). Furthermore, D7-induced [Ca(2+)](c) was found to alter mitochondrial membrane potential and induce cytochrome c release, which was inhibited by either Bapta-AM or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter). Thus, these results provided a deeper insight into the D7-induced redox signaling which eventually integrated the calcium-dependent calpain/caspase12 activation and mitochondrial alterations to accentuate the induction of apoptotic cell death.  相似文献   

17.
Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel activation. The aim of this study was to determine the signalling pathways responsible for H(2)O(2)-induced VSOR Cl(-) channel activation. In rat hepatoma (HTC) cells, H(2)O(2) elicited a transient increase in tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) that was blocked by PP2, a Src-family protein kinases inhibitor. Also, H(2)O(2) triggered an increase in cytosolic [Ca(2+)] that paralleled the time course of PLCgamma1 phosphorylation. The H(2)O(2)-induced [Ca(2+)](i) rise was prevented by the generic phospholipase C (PLC) inhibitor U73122 and the inositol 1,4,5-trisphosphate-receptor (IP(3)R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCgamma1 activation and/or [Ca(2+)](i) rise, abolished H(2)O(2)-induced VSOR Cl(-) currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCgamma1, H(2)O(2) did not induce activation of VSOR Cl(-) currents. All these H(2)O(2)-induced effects were independent of extracellular Ca(2+). Our findings suggest that activation of PLCgamma1 and subsequent Ca(2+)(i) mobilisation mediate H(2)O(2)-induced VSOR Cl(-) currents, indicating that H(2)O(2) operates via redox-sensitive signalling pathways akin to those activated by osmotic challenges.  相似文献   

18.
Sun L  Yau HY  Lau OC  Huang Y  Yao X 《PloS one》2011,6(9):e25432
We compared the Ca(2+) responses to reactive oxygen species (ROS) between mouse endothelial cells derived from large-sized arteries, aortas (aortic ECs), and small-sized arteries, mesenteric arteries (MAECs). Application of hydrogen peroxide (H(2)O(2)) caused an increase in cytosolic Ca(2+) levels ([Ca(2+)](i)) in both cell types. The [Ca(2+)](i) rises diminished in the presence of U73122, a phospholipase C inhibitor, or Xestospongin C (XeC), an inhibitor for inositol-1,4,5-trisphosphate (IP(3)) receptors. Removal of Ca(2+) from the bath also decreased the [Ca(2+)](i) rises in response to H(2)O(2). In addition, treatment of endothelial cells with H(2)O(2) reduced the [Ca(2+)](i) responses to subsequent challenge of ATP. The decreased [Ca(2+)](i) responses to ATP were resulted from a pre-depletion of intracellular Ca(2+) stores by H(2)O(2). Interestingly, we also found that Ca(2+) store depletion was more sensitive to H(2)O(2) treatment in endothelial cells of mesenteric arteries than those of aortas. Hypoxanthine-xanthine oxidase (HX-XO) was also found to induce [Ca(2+)](i) rises in both types of endothelial cells, the effect of which was mediated by superoxide anions and H(2)O(2) but not by hydroxyl radical. H(2)O(2) contribution in HX-XO-induced [Ca(2+)](i) rises were more significant in endothelial cells from mesenteric arteries than those from aortas. In summary, H(2)O(2) could induce store Ca(2+) release via phospholipase C-IP(3) pathway in endothelial cells. Resultant emptying of intracellular Ca(2+) stores contributed to the reduced [Ca(2+)](i) responses to subsequent ATP challenge. The [Ca(2+)](i) responses were more sensitive to H(2)O(2) in endothelial cells of small-sized arteries than those of large-sized arteries.  相似文献   

19.
The melastatin transient receptor potential (TRP) channel, TRPM4, is a critical regulator of smooth muscle membrane potential and arterial tone. Activation of the channel is Ca(2+)-dependent, but prolonged exposures to high global Ca(2+) causes rapid inactivation under conventional whole-cell patch clamp conditions. Using amphotericin B perforated whole cell patch clamp electrophysiology, which minimally disrupts cytosolic Ca(2+) dynamics, we recently showed that Ca(2+) released from 1,2,5-triphosphate receptors (IP(3)R) on the sarcoplasmic reticulum (SR) activates TRPM4 channels, producing sustained transient inward cation currents (TICCs). Thus, Ca(2+)-dependent inactivation of TRPM4 may not be inherent to the channel itself but rather is a result of the recording conditions. We hypothesized that under conventional whole-cell configurations, loss of intrinsic cytosolic Ca(2+) buffering following cell dialysis contributes to inactivation of TRPM4 channels. With the inclusion of the Ca(2+) buffers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 10mM) or bis-ethane-N,N,N',N'-tetraacetic acid (BAPTA, 0.1mM) in the pipette solution, we mimic endogenous Ca(2+) buffering and record novel, sustained whole-cell TICC activity from freshly-isolated cerebral artery myocytes. Biophysical properties of TICCs recorded under perforated and whole-cell patch clamp were nearly identical. Furthermore, whole-cell TICC activity was reduced by the selective TRPM4 inhibitor, 9-phenanthrol, and by siRNA-mediated knockdown of TRPM4. When a higher concentration (10mM) of BAPTA was included in the pipette solution, TICC activity was disrupted, suggesting that TRPM4 channels on the plasma membrane and IP(3)R on the SR are closely opposed but not physically coupled, and that endogenous Ca(2+) buffer proteins play a critical role in maintaining TRPM4 channel activity in native cerebral artery smooth muscle cells.  相似文献   

20.
Oxidative stress is a key apoptotic stimulus in neuronal cell death and has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinson disease (PD). Recently, we demonstrated that protein kinase C-delta (PKCdelta) is an oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce apoptotic cell death in cell culture models of Parkinson disease (Kaul, S., Kanthasamy, A., Kitazawa, M., Anantharam, V., and Kanthasamy, A. G. (2003) Eur. J. Neurosci. 18, 1387-1401 and Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A., and Anantharam, V. (2003) Antioxid. Redox. Signal. 5, 609-620). Here we showed that the phosphorylation of a tyrosine residue in PKCdelta can regulate the proteolytic activation of the kinase during oxidative stress, which consequently influences the apoptotic cell death in dopaminergic neuronal cells. Exposure of a mesencephalic dopaminergic neuronal cell line (N27 cells) to H(2)O(2)(0-300 microm) induced a dose-dependent increase in cytotoxicity, caspase-3 activation and PKCdelta cleavage. H(2)O(2)-induced proteolytic activation of PKC was delta mediated by the activation of caspase-3. Most interestingly, both the general Src tyrosine kinase inhibitor genistein (25 microm) and the p60(Src) tyrosine-specific kinase inhibitor (TSKI; 5 microm) dramatically inhibited H(2)O(2) and the Parkinsonian toxin 1-methyl-4-phenylpyridinium-induced PKCdelta cleavage, kinase activation, and apoptotic cell death. H(2)O(2) treatment also increased phosphorylation of PKCdelta at tyrosine site 311, which was effectively blocked by co-treatment with TSKI. Furthermore, N27 cells overexpressing a PKCdelta(Y311F) mutant protein exhibited resistance to H(2)O(2)-induced PKCdelta cleavage, caspase activation, and apoptosis. To our knowledge, these data demonstrate for the first time that phosphorylation of Tyr-311 on PKCdelta can regulate the proteolytic activation and proapoptotic function of the kinase in dopaminergic neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号