首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In a recent study we investigated the complex mechanisms regulating the pollen release via thigmonastic stamen movement found exclusively in Loasaceae subfamily Loasoideae. We demonstrated that stamen movement is modulated by abiotic (light and temperature) as well as biotic stimuli (pollinator availability and visitation frequency). This is explained as a mechanism to adjust the rate of stamen movement and thus pollen dispensation to different environmental conditions in order to optimize pollen transfer. Stamen movement is rapid and thus a near-immediate response to pollinator visits. However, Loasaceae flowers also show a response to biotic stimuli on a longer time scale, by adjusting the duration of both the staminate and the carpellate phase of the anthesis. We here present two additional data sets on species not previously studied, underscoring the shortening of the staminate phase in the presence of pollinator visits vs. their absence and the shortening of the carpellate phase after pollination. Overall, the plant shows not only a rapid but an “intelligent” reaction to its environment in adjusting anthesis and pollen presentation to a range of factors. The physiological and morphological bases of the stamen movement are poorly understood. Our previous study showed that there is no direct spatial relationship between the place of stimulation in the flower and the stamen bundle activated. We here further show the morphological basis for stamen movement from a reflexed into an erect position: Only the basal part of the filament curves around the receptacle, while the upper part of the filament retains its shape. We hypothesize that the stimulus is transmitted over the entire receptacle and the place of reaction is determined by stamen maturity, not the location of the stimulus.  相似文献   

2.
Abstract.— I address how floral complexity influences geitonogamous self-pollination through manipulation of pollinator behavior in Salvia nipponica . The pivoting stamens of S. nipponica hinder nectar-collecting bumblebees from crawling into flowers, increasing the probing time per flower. I predicted that longer probing times would reduce the relative cost of moving between plants, causing bees to leave plants earlier. To test this prediction, I simplified S. nipponica flowers by removing the stamens from all open flowers within a 75-m2 quadrat. Bumblebees probed these flowers more quickly than intact flowers, but the stamen removal affected neither the frequency of flower revisitation nor the flight distance between plants. In response to the decrease in the probing time per flower, bees probed more flowers on these plants. Therefore, in S. nipponica , floral complexity reduces the opportunity for geitonogamous self-pollination. Stamen removal also increased bee visitation per flower, suggesting that this sort of complexity deters visitation. To keep complex flowers attractive, therefore, selection might increase floral rewards or longevity. Floral complexity might evolve in an integrative manner with the rest of the floral phenotype.  相似文献   

3.
雄蕊运动指雄蕊在自身能量支持下发生的主动运动,不包括雄蕊在访花者触碰下造成的被动位移。该文总结了雄蕊的应激运动、快速猛烈弹射、缓慢运动以及级联运动等4种主要类型,分析了这些运动类型的系统分布及繁殖适应意义等方面的研究进展。雄蕊的应激运动由访花者或其他外力诱发,可能起到促进散粉和实现繁殖保障的作用;雄蕊快速猛烈的弹射运动可将花粉猛然撒向空中或访花者身上,促进了花粉的风媒或虫媒散布;缓慢运动的雄蕊可能通过在不同花期改变雄蕊的空间位置和雌雄异位程度来调节繁殖策略,或主动将雄蕊花药移至特定部位(如柱头表面)实现自交;雄蕊逐一、依次发生的级联运动较为复杂,主要分布在刺莲花科、梅花草科、旱金莲科和芸香科中,目前还缺乏实验研究;但根据"花粉呈现理论"以及其他类型的雄蕊运动研究结果,雄蕊的级联运动可以将花粉分批呈现给不同的传粉者,通过不同传粉者的分别传粉来提高花粉的输出;而且可避免已散粉雄蕊对即将散粉雄蕊的干扰,同时可能也降低了雌雄功能干扰和(或)花内自交。在芸香(Ruta graveolens)中,级联运动之后的雄蕊还会在花末期再同时向花中央运动;这种多向、多次运动方式是目前发现的最复杂的雄蕊运动类型。雄蕊运动领域值得今后开展进一步实验研究的方向主要有:1)雄蕊运动尤其是级联运动对雌雄功能干扰(性别间干扰)、雄蕊与雄蕊的"性别内干扰"等植物繁殖格局的影响;2)雄蕊运动与雌雄异熟、雌雄异位等花部特征的相互作用;3)雄蕊运动复杂类型的生理与发育机制。  相似文献   

4.
  • Analyses of resource presentation, floral morphology and pollinator behaviour are essential for understanding specialised plant‐pollinator systems. We investigated whether foraging by individual bee pollinators fits the floral morphology and functioning of Blumenbachia insignis, whose flowers are characterised by a nectar scale‐staminode complex and pollen release by thigmonastic stamen movements.
  • We described pollen and nectar presentation, analysed the breeding system and the foraging strategy of bee pollinators. We determined the nectar production pattern and documented variations in the longevity of floral phases and stigmatic pollen loads of pollinator‐visited and unvisited flowers.
  • Bicolletes indigoticus (Colletidae) was the sole pollinator with females revisiting flowers in staminate and pistillate phases at short intervals, guaranteeing cross‐pollen flow. Nectar stored in the nectar scale‐staminode complex had a high sugar concentration and was produced continuously in minute amounts (~0.09 μl·h?1). Pushing the scales outward, bees took up nectar, triggering stamen movements and accelerating pollen presentation. Experimental simulation of this nectar uptake increased the number of moved stamens per hour by a factor of four. Flowers visited by pollinators received six‐fold more pollen on the stigma than unvisited flowers, had shortened staminate and pistillate phases and increased fruit and seed set.
  • Flower handling and foraging by Bicolletes indigoticus were consonant with the complex flower morphology and functioning of Blumenbachia insignis. Continuous nectar production in minute quantities but at high sugar concentration influences the pollen foraging of the bees. Partitioning of resources lead to absolute flower fidelity and stereotyped foraging behaviour by the sole effective oligolectic bee pollinator.
  相似文献   

5.

Background and Aims

Stamen movements directly determine pollen fates and mating patterns by altering positions of female and male organs. However, the implications of such movements in terms of pollination are not well understood. Recently, complex patterns of stamen movements have been identified in Loasaceae, Parnassiaceae, Rutaceae and Tropaeolaceae. In this study the stamen movements in Ruta graveolens (Rutaceae) and their impact on pollination are determined.

Methods

Pollination effects of stamen movements were studied in Ruta graveolens, in which one-by-one uplifting and falling back is followed by simultaneous movement of all stamens in some flowers. Using 30 flowers, one stamen was manipulated either to be immobilized or to be allowed to move freely towards the centre of the flower but be prevented from falling back. Pollen loads on stigmas and ovule fertilization in flowers with or without simultaneous stamen movement were determined.

Results

Pollen removal decreased dramatically (P < 0·001) when the stamen was stopped from uplifting because its anther was seldom contacted by pollinators. When a stamen stayed at the flower''s centre, pollen removal of the next freely moved anther decreased significantly (P < 0·005) because of fewer touches by pollinators and quick leaving of pollinators that were discouraged by the empty anther. Simultaneous stamen movement occurred only in flowers with low pollen load on the stigma and the remaining pollen in anthers dropped onto stigma surfaces after stamens moved to the flower''s centre.

Conclusions

In R. graveolens pollen removal is promoted through one-by-one movement of the stamen, which presents pollen in doses to pollinators by successive uplifting of the stamen and avoids interference of two consecutively dehisced anthers by falling back of the former stamen before the next one moves into the flower''s centre. Simultaneous stamen movement at the end of anthesis probably reflects an adaptation for late-acting self-pollination.  相似文献   

6.
Floral sexual organ (stamen and pistil) movements are selective adaptations that have different functions in male-female reproduction and the evolution of flowering plants. However, the significance of stamen movements in the spatial–temporal function and separation of male and female organs has not been experimentally determined in species exhibiting floral temporal closure. The current study investigated the role of slow stamen (group-by-group) movement in male-female sexual function, and the effect of stamen movement on pollen removal, male-male and male-female interference, and mating patterns of Geranium pratense, a plant with temporal floral closure. This species uses stamen group-by-group movement and therefore anther-stigma spatial–temporal separation. Spatial separation (two whorls of stamen and pistil length) was shown to be stronger than temporal separation. We found that stamen movements to the center of the flower increase pollen removal, and the most common pollinators visited more frequently and for longer durations during the male floral stage than during the female floral stage. Petal movements increased both self-pollen deposition rate and sexual interference in G. pratense. The fruit and seed set of naturally and outcrossed pollinated flowers were more prolific than those of self-pollinated flowers. Group-by-group stamen movement, dehiscence of stamens, pistil movement, and male-female spatial–temporal functional separation of G. pratense before floral temporal closure may prevent male-female and stamen-stamen interference and pollen discounting, and may increase pollen removal and cross-pollination.  相似文献   

7.
When fertilization triggers flower senescence, early autonomous selfing may cause flowers to senesce before pollen has dispersed, discounting unused pollen. Selfing-induced flower senescence was examined in Leptosiphon jepsonii, a species that varies in the timing of self-compatibility. In field and greenhouse experiments, fertilization had a large effect on flower senescence; most outcrossed flowers senesced after 1 d whereas emasculated flowers lasted 2-5 d. In a comparison of inbred lines from three populations, longevity of autonomously selfed flowers of early self-compatible individuals was significantly less than that of late self-compatible individuals. In field experiments, autonomously selfed flowers were shorter-lived in a predominantly early-selfing population than in a predominantly late-selfing population. Pollen was available and viable beyond the first day of anthesis, suggesting that reductions in flower longevity caused by autonomous selfing could incur a cost to male outcross fitness. We argue that this effect is likely to be most pronounced under intermediate rates of pollinator visitation. Observed pollinator visitation rates ranged from 0.035-0.775 visits per flower per day, indicating a potential for selfing-induced flower senescence to incur pollen discounting in Leptosiphon jepsonii.  相似文献   

8.
The selective pressure imposed by maximizing male fitness (pollen dispersal) in shaping floral structures is increasingly recognized and emphasized in current plant sciences. To maximize male fitness, many flowers bear a group of stamens with temporally separated anther dehiscence that prolongs presentation of pollen grains. Such an advantage, however, may come with a cost resulting from interference of pollen removal by the dehisced anthers. This interference between dehisced and dehiscing anthers has received little attention and few experimental tests to date. Here, using one-by-one stamen movement in the generalist-pollinated Parnassia palustris, we test this hypothesis by manipulation experiments in two years. Under natural conditions, the five fertile stamens in P. palustris flowers elongate their filaments individually, and anthers dehisce successively one-by-one. More importantly, the anther-dehisced stamen bends out of the floral center by filament deflexion before the next stamen''s anther dehiscence. Experimental manipulations show that flowers with dehisced anther remaining at the floral center experience shorter (1/3–1/2 less) visit durations by pollen-collecting insects (mainly hoverflies and wasps) because these ‘hungry’ insects are discouraged by the scant and non-fresh pollen in the dehisced anther. Furthermore, the dehisced anther blocks the dehiscing anther''s access to floral visitors, resulting in a nearly one third decrease in their contact frequency. As a result, pollen removal of the dehiscing anther decreases dramatically. These results provide the first direct experimental evidence that anther-anther interference is possible in a flower, and that the selection to reduce such interferences can be a strong force in floral evolution. We also propose that some other floral traits, usually interpreted as pollen dispensing mechanisms, may function, at least partially, as mechanisms to promote pollen dispersal by reducing interferences between dehisced and dehiscing anthers.  相似文献   

9.
花粉的时序呈现是指植物花药按一定次序释放花粉的现象, 被认为是对传粉者访问频率的一种适应。在传粉者充足的环境中, 植物通过限制花粉1次被移出的数量, 使花粉供体能作为多个父本, 从而提高雄性适合度。该文从开花习性、花部特征、传粉者及繁育系统等方面对早春短命植物黑鳞顶冰花(Gagea nigra)的花粉呈现时序及其适应性进行研究, 结果表明, 黑鳞顶冰花单花期约5-7天; 白天开放, 晚上闭合, 花药次序开裂, 呈拉链式散粉, 散粉期4-6天。黑鳞顶冰花以异交为主, 部分自交亲和。蝇类和食蚜蝇为主要传粉者, 访花频率为(0.141±0.078) flower∙h-1。在雄蕊的时序散粉过程中, 雌蕊持续生长, 经历了从低于雄蕊到等高、再到高于雄蕊阶段。在等高阶段, 单花早晚的开闭, 使得雌雄蕊紧靠在一起, 促成了自动自花授粉。在传粉者缺乏的环境中, 黑鳞顶冰花的花粉时序呈现延长了散粉期, 在等待传粉者和分摊风险方面具重要作用。这种花粉渐次呈现的策略, 在新疆的早春开花植物中可能广泛存在。  相似文献   

10.
  • Long‐lived flowers increase pollen transfer rates, but these entail high water and carbon maintenance costs. The retention of pollinated and reward‐free old flowers enhances pollinator visitation to young receptive flowers by increasing floral display size. This mechanism is associated with acropetal inflorescences or changes in flower colour and openness, but the retention of unchanging solitary flowers remains overlooked.
  • We examined pollination‐dependent variation in floral longevity and determined stigmatic receptivity, pollen viability and pollen removal rates among flower ages in Kielmeyera regalis, a Neotropical savanna shrub. We also evaluated the effects of floral display size on pollinator visitation rates. Lastly, we determined whether old flowers are unvisited and exclusively increase pollinator attraction to young flowers through flower removal experiments.
  • Regardless of pollination treatment, flowers lasted fully open with no detectable physical changes for 3 days. Over time, stigmas remained receptive but >95% of pollen was removed. Pollinator visitation significantly increased with floral display size and intermediate percentages (15–30%) of newly opened flowers. Accordingly, the retention of reward‐free and unvisited old flowers increased young flower–pollinator interaction.
  • Our results reveal the importance of a prolonged floral longevity in increasing pollinator attraction toward newly opened receptive flowers without changes in flower colour and form. We conclude that the retention of pollinated, reward‐free and unvisited colour‐unchanged old flowers in K. regalis is a strategy that counteracts the water use costs associated with the maintenance of large flowers with increased mate opportunities in a pollen‐limited scenario.
  相似文献   

11.
In flowers of Cajophora arechavaletae Urb. the stamens are hidden from flower visitors in naviculate petals. In the male phase the stamens successively migrate at irregular intervals to the centre of the flower where they present pollen. Therefore, non-specialised pollinators cannot predict the time of pollen presentation. The oligolectic females of Bicolletes pampeana are effective pollinators of Cajophora arechavaletae. Females and males can elicit stamen movements by pressing the scales of the nectaries outwards with their head while taking up nectar. If this stimulus is responded to, up to 3 stamens move and reach the centre of the flower on average after 2.4 min. Experiments showed that the stimulus of nectar scale pressing was responded to maximally when the inter-stimulus interval was at least 14 min. B. pampeana females have evolved a foraging strategy which is adapted to the unique pollen presentation of C. arechavalete flowers. On microforaging routes they trapline 30–60 flowers and, therefore, most frequently come back to the same flower after intervals of about 3 min. This is exactly the period after which a female can expect pollen in the centre of the flower if her previous stimulus was responded to. Competition between the females causes them to return to the flowers at such short intervals.  相似文献   

12.
Reward partitioning and replenishment and specific mechanisms for pollen presentation are all geared towards the maximization of the number of effective pollinator visits to individual flowers. An extreme case of an apparently highly specialized plant–pollinator interaction with thigmonastic pollen presentation has been described for the morphologically complex tilt‐revolver flowers of Caiophora arechavaletae (Loasaceae) pollinated by oligolectic Bicolletes pampeana (Colletidae, Hymenoptera). We studied the floral biology of Nasa macrothyrsa (Loasaceae) in the field and in the glasshouse, which has very similar floral morphology, but is pollinated by polylectic Neoxylocopa bees (Apidae, Hymenoptera). We investigated the presence of thigmonastic anther presentation, visitor behaviour (pollinators and nectar robbers), co‐ordination of pollinator visits with flower behaviour and the presence of nectar replenishment. The aim of this study was to understand whether complex flower morphology and behaviour can be explained by a specialized pollination syndrome, or whether alternative explanations can be offered. The results showed that Nasa macrothyrsa has thigmonastic pollen presentation, i.e. new pollen is rapidly (<< 10 min) presented after a pollinator visit. Nectar secretion is independent of removal and averages 7–14 µL h–1. The complex flowers, however, fail to exclude either native (hummingbirds) or introduced (honeybees) nectar robbers, nor does polylectic Neoxylocopa actively collect the pollen presented. The findings do not support a causal link between complex flower morphology and functionality in Loasaceae and a highly specialized pollination. Rapid pollen presentation is best explained by the pollen presentation theory: the large proportion of pollinators coming shortly after a previous visit find little nectar and are more likely to move on to a different plant. The rapid presentation of pollen ensures that all these valuable ‘hungry pollinators’ are dusted with small pollen loads, thus increasing the male fitness of the plant by increasing the likelihood of siring outcrossed offspring. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 124–131.  相似文献   

13.
《Acta Oecologica》2008,33(3):262-268
Pollen limitation through insufficient pollen deposition on stigmas caused by too infrequent pollinator visitation may influence the reproductive outcome of plants. In this study we investigated how pollinator visitation rate, the degree of pollen limitation, and flower longevity varied spatially among three sites at different altitudes within a population of the dwarf shrub Dryas octopetala L. in alpine southern Norway. Significant pollen limitation on seed set only occurred at the mid-elevation site, while seed set at the other sites appeared to be mainly resource limited, thus indicating a spatial variation in pollen limitation. There was no association between the spatial variation in the extent of pollen limitation and pollinator visitation rate to flowers. However, pollinator visitation rates were related to flower longevity of Dryas; sites with low visitation rates had long-lived flowers and vice versa. Thus, our results suggest within-population spatial co-variation between pollinator visitation rates, pollen limitation, and a developmental response to these factors, flower longevity.  相似文献   

14.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

15.
Pollen limitation through insufficient pollen deposition on stigmas caused by too infrequent pollinator visitation may influence the reproductive outcome of plants. In this study we investigated how pollinator visitation rate, the degree of pollen limitation, and flower longevity varied spatially among three sites at different altitudes within a population of the dwarf shrub Dryas octopetala L. in alpine southern Norway. Significant pollen limitation on seed set only occurred at the mid-elevation site, while seed set at the other sites appeared to be mainly resource limited, thus indicating a spatial variation in pollen limitation. There was no association between the spatial variation in the extent of pollen limitation and pollinator visitation rate to flowers. However, pollinator visitation rates were related to flower longevity of Dryas; sites with low visitation rates had long-lived flowers and vice versa. Thus, our results suggest within-population spatial co-variation between pollinator visitation rates, pollen limitation, and a developmental response to these factors, flower longevity.  相似文献   

16.
Lythrum salicaria, now a widespread invasive species, exhibits tristyly, a form of heteromorphic selfincompatibility. In tristyly, each plant exhibits one (and only one) of three morphologically different floral forms. Moreover, each flower produces two types of stamens, and these two exhibit different incompatibility reactions. Differences between stamens of a single flower must be the result of epigenetic phenomena and for that reason, we performed two-dimensional gel electrophoresis (2-DE) to analyze fractions of soluble proteins derived from the pollen coat and protoplast including three hydrolytic enzymes from the six different stamen types (two from each of three floral forms). There were significant differences in the 2-D protein profiles both between pollen from the same flower and between the same type of pollen from two different flowers, in the pollen coat as well as in the protoplast extracts. In five of the six samples of pollen fractions, characteristic peptides were found. Quantitative differences between pollen from the same flower were observed in case of esterases. Furthermore, analysis of proteases and acid phosphatases revealed also qualitative differences between these enzymes in pollen from the same flower.  相似文献   

17.

Background and Aims

Spatial (herkogamy) and temporal (dichogamy) separation of pollen presentation and stigma receptivity have been interpreted as reducing interference between male and female functions in hermaphroditic flowers. However, spatial separation leads to a potential conflict: reduced pollination accuracy, where pollen may be placed in a location on the pollinator different from the point of stigma contact.

Methods

To understand better how herkogamous flowers resolve this conflict, a study was made of a subalpine herb, Parnassia epunctulata, the nectariferous flowers of which exhibit sequential anther dehiscence (staggered pollen presentation) and stamen movements; usually one newly dehisced anther is positioned each day over the central gynoecium, while the older stamens bend away from the central position.

Key Results

The open flowers were visited by a variety of pollinators, most of which were flies. Seed set was pollinator-dependent (bagged flowers set almost no seeds) and pollen-limited (manual pollination increased seed set over open pollination). Analyses of adaptive accuracy showed that coordinated stamen movements and style elongation (movement herkogamy) dramatically increased pollination accuracy. Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the vertical and horizontal planes in relation to the opposite sexual structure and pollinator position. By contrast, the spatial correspondence between anthers and stigma was dramatically lower before the anthers dehisced and after stamens bent outwards, as well as before and after the period of stigmatic receptivity.

Conclusions

It is shown for the first time that a combination of movement herkogamy and dichogamy can maintain high pollination accuracy in flowers with generalized pollination. Staggered pollen and stigma presentation with spatial correspondence can both reduce sexual interference and improve pollination accuracy.  相似文献   

18.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

19.
Aims Floral longevity, the duration that a flower remains open and functional, varies greatly among species. Variation in floral longevity has been considered to be optimal strategy for resource allocation under different ecological conditions, mainly determined by the rates of pollination and cost of flower maintenance. However, it is unclear whether an intrinsic factor, floral sexual investment, constrains evolution of floral longevity. The theoretical model also predicts that dichogamy favors long-lived flowers, but empirical studies to test this prediction remain unexplored.Methods To examine the effect of floral sexual investment on floral longevity, we measured flower size together with pollen and ovule production in 37 sympatric flowering plants in a natural community. The duration of the female and male phase in 21 protandrous species and floral longevity of the other 16 adichogamous species were documented in the field.Important findings Floral longevity varied from 1 day to 15 days, while pollen number per flower varied from 643 to 710880 and ovule number per flower from 1 to 426 in the 37 species. Flower size was correlated with pollen production as well as ovule production. Floral longevity was positively related to pollen production but not to ovule production. Consistent with the prediction that dichogamy favors long-lived flowers, we found the floral longevity of protandrous species was significantly longer than that of adichogamous species. In the protandrous species, pollen production per flower was observed to be positively related to male duration, while ovule production was not related to female duration. Our analyses of variation in floral longevity and sexual investment among different species suggest that the floral sexual investment could be an intrinsic factor contributing to the selected floral longevity, particularly the male phase, and that high pollen production could potentially increase pollen removal, i.e. male productive success.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号