首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water salinity represents an environmental stress for many species. Amphibians are particularly sensitive because they are generally poor osmoregulators, and most species are completely absent from brackish and saline environments. We experimentally examined the effect of different salinity levels on larvae of the toad Bufo calamita L., a species that occupies freshwater ponds but can also breed in brackish ponds. Two independent experiments are reported here. In both experiments, tadpoles under saline conditions (ranging between 85 and 200 mOsm) showed a slower developmental rate, metamorphosing between 4 and 9 d later than the controls. Bufo calamita tadpoles reared in brackish water increased their osmolality and solute concentration (mainly sodium and chloride), decreased their levels of glucose, and decreased the total protein content, all measured from whole-animal extracts. Although most larval anurans are strictly ammoniotelic until the completion of metamorphosis, a few species exposed to dehydrating environments have evolved the ability to use urea as an osmolyte during the larval phase. The data presented here reveal that although B. calamita seems to be yet another exception to the rule of larval strict ammoniotelism, the tadpoles are not able to use urea as an osmolyte and rely on sodium-chloride balance instead. Preliminary immunoassays of thyroid hormone content suggest a possible decrease in hormone levels induced in water salinity conditions that correlate with a decreased developmental rate.  相似文献   

2.
Wu CS  Gomez-Mestre I  Kam YC 《Oecologia》2012,169(1):15-22
Harsh environments experienced early in development have immediate effects and potentially long-lasting consequences throughout ontogeny. We examined how salinity fluctuations affected survival, growth and development of Fejervarya limnocharis tadpoles. Specifically, we tested whether initial salinity effects on growth and rates of development were reversible and whether they affected the tadpoles’ ability to adaptively accelerate development in response to deteriorating conditions later in development. Tadpoles were initially assigned to either low or high salinity, and then some were switched between salinity levels upon reaching either Gosner stage 30 (early switch) or 38 (late switch). All tadpoles initially experiencing low salinity survived whereas those initially experiencing high salinity had poor survival, even if switched to low salinity. Growth and developmental rates of tadpoles initially assigned to high salinity did not increase after osmotic stress release. Initial low salinity conditions allowed tadpoles to attain a fast pace of development even if exposed to high salinity afterwards. Tadpoles experiencing high salinity only late in development metamorphosed faster and at a smaller size, indicating an adaptive acceleration of development to avoid osmotic stress. Nonetheless, early exposure to high salinity precluded adaptive acceleration of development, always causing delayed metamorphosis relative to those in initially low salinity. Our results thus show that stressful environments experienced early in development can critically impact life history traits, having long-lasting or irreversible effects, and restricting their ability to produce adaptive plastic responses.  相似文献   

3.
Human-induced environmental change is occurring at an unprecedented rate and scale. Many freshwater habitats, in particular, have been degraded as a result of increased salinity. Little is known about the effects of anthropogenic salinization on freshwater organisms, especially at sublethal concentrations, where subtle behavioural changes can have potentially drastic fitness consequences. Using a species of Australian frog (Litoria ewingii), we experimentally examined the effects of salinization on tadpole behaviour and their vulnerability to a predatory dragonfly nymph (Hemianax papuensis). We found that tadpoles exposed to an ecologically relevant concentration of salt (15% seawater, SW) were less active than those in our freshwater control (0.4% SW). Tadpoles in elevated salinity also experienced a higher risk of predation, even though the strike rate of the predator did not differ between salt and freshwater treatments. In a separate experiment testing the burst-speed performance of tadpoles, we found that tadpoles in saltwater were slower than those in freshwater. Thus, it would appear that salt compromised the anti-predator response of tadpoles and made them more susceptible to being captured. Our results demonstrate that environmentally relevant concentrations of aquatic contaminants can, even at sublethal levels, severely undermine the fitness of exposed organisms.  相似文献   

4.
The cane toad (Rhinella marina) is one of the most successful invasive species worldwide, and has caused significant negative impacts on Australian fauna. Experimental work in the laboratory and in mesocosms has shown that tadpoles of native frogs can affect survival, size at metamorphosis and duration of larval period of cane toad tadpoles. To test if these effects occur in nature, we conducted a field experiment using two temporary ponds where we set up enclosures with tadpoles of native green tree frogs (Litoria caerulea) and cane toads in treatments with a range of densities and combinations. The presence of green tree frog tadpoles significantly decreased the growth rate of toad tadpoles and increased the duration of their larval period in both ponds; in one pond, frog tadpoles also significantly reduced the body length and mass of metamorph toads. Toad tadpoles did not have any significant negative effects on green tree frog tadpoles, but there was strong intraspecific competition within the latter species: increased frog tadpole density resulted in increased larval period and reduced survival, growth rate and size at metamorphosis for frogs at one or both ponds. Our results are encouraging for the possibility of using native frogs as one component of an integrated approach to the biological control of cane toads.  相似文献   

5.
Kinship and density are believed to affect important ecological processes such as intraspecific competition, predation, growth, development, cannibalism, habitat selection and mate choice, In this work, we used Chinese tiger frog Hoplobatrachus chinensis tadpoles as an experimental model to investigate the effects of kinship and density on growth and development of this species over a 73 day period. The results showed that density can affect the growth and developmental traits (survival rate, larval period, size at the limb bud protrusion/metamorphic climax and body mass at different life stages) of H. chinensis tadpoles, while kinship does not. Tadpoles took longer to develop and potential metamorphosis was greater in high density groups of both sibling and non-siblings. The interaction of kinship and density did not significantly influenced growth traits of H. chinensis tadpoles during the experimental period. For coefficient variations of each growth trait, no differences were detected between sibling and non-sibling groups. These findings provide valuable information on the basic ecology of H. chinensis which will be helpful in future studies of other anuran species.  相似文献   

6.
王立志 《生物资源》2019,(5):397-401
本文对中国林蛙受精卵、蝌蚪和幼蛙等不同发育阶段生长发育的盐效应进行了综述。盐度对不同发育阶段的中国林蛙均有影响。中国林蛙受精卵孵化的最适盐浓度范围为0~5 g/L,孵化率超过80%;在2~3 g/L盐浓度下孵化的中国林蛙雌性个体超过90%,孵化后中国林蛙蝌蚪的存活率没有显著变化;中国林蛙蝌蚪和变态幼蛙的安全盐度上限分别为2 g/L和1.5 g/L。这些研究结果为中国林蛙野生资源的保护和人工养殖提供了一定的理论基础。  相似文献   

7.
The role of thyroid hormone (TH) in anuran metamorphosis has been documented from a variety of approaches, but the sequence of morpho-histological development of the thyroid glands that produce the secretion of the hormone was assumed invariant from studies of relatively few species even when the effects of environmental influences on larval development and metamorphosis have been largely documented. There are anurans in which developmental and growth rates diverge, and the resulting heterochrony in growth and development produces giant/miniature tadpoles, and or rapid/delayed metamorphosis suggesting changes of the activity of the thyroid glands during larval development. Herein, we analyze the morpho-histological variation of the thyroid glands in larval series of Ceratophrys cranwelli, Chacophrys pierottii, Lepidobatrachus laevis and L. llanensis that share breeding sites along semiarid environments of the Chaco in South America, belong to a monophyletic lineage, and present accelerated patterns in growth and development in order to have a morphological evidence about a possible shift of TH physiology. We describe gross morphology and histology of the thyroid glands and find features shared by all studied species such as the presence of supernumerary heterotopic follicles; changes in the volume and number of follicles towards the metamorphic climax, and cuboidal epithelia with occasional intra-cellular vacuoles as signs of low glandular activity without a manifest peak at the climax as it was assumed for anurans. We discuss different lines of evidence to interpret sources of extra supplement of TH to support the rapid metamorphosis. These interpretations highlight the necessity to design a research program to investigate the endocrine variation during development of ceratophryids taking in account their morphology, physiology and ecology in order to learn more about the effects of environmental and developmental interactions involved in the anuran evolution.  相似文献   

8.
Introduced species are frequently believed to have adverse effects on native biota and ecosystems. However, much of our knowledge of the ecological impacts of introduced species is anecdotal, and the mechanisms controlling these effects are often poorly understood. I used replicated artificial pond experiments to investigate the impact of eggs and hatchlings of the introduced toad Bufo marinus on populations of native anuran larvae (Limnodynastes ornatus and Litoria rubella) in Australia. Bufo marinus eggs and hatchlings are highly toxic to predatory native tadpoles. Under naturalistic conditions, populations of predatory L. ornatus tadpoles experienced significantly reduced survival when exposed to Bufo eggs and hatchlings. The impact of Bufo on L. ornatus survival was positively correlated with Bufo density. However, the toxic effects of Bufo on L. ornatus indirectly facilitated the survival of later-breeding L. rubella by altering predator-prey interactions between L. ornatus and L. rubella. Limnodynastes ornatus tadpoles are voracious predators of L. rubella eggs and hatchlings. Consequently, the negative impact of Bufo on populations of L. ornatus tadpoles reduced the intensity of predation by L. ornatus tadpoles on L. rubella eggs and hatchlings, thereby increasing L. rubella survival. The results demonstrate that B. marinus plays an important role in structuring native larval anuran communities via direct and indirect mechanisms, and that Bufo may have both negative and positive effects on populations of native anuran larvae. As far as I am aware, these are the first quantitative data to demonstrate that introduced fauna may affect populations of native biota via toxic effects.  相似文献   

9.
Anuran larvae show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. The capacity for temperature-induced developmental plasticity is determined by the thermal adaptation of a population. Multiple factors such as physiological responses to changing environmental conditions, however, might influence this capacity as well. In anuran larvae, thyroid hormone (TH) levels control growth and developmental rate and changes in TH status are a well-known stress response to sub-optimal environmental conditions. We investigated how chemically altered TH levels affect the capacity to exhibit temperature-induced developmental plasticity in larvae of the African clawed frog (Xenopus laevis) and the common frog (Rana temporaria). In both species, TH level influenced growth and developmental rate and modified the capacity for temperature-induced developmental plasticity. High TH levels reduced thermal sensitivity of metamorphic traits up to 57% (R. temporaria) and 36% (X. laevis). Rates of growth and development were more plastic in response to temperature in X. laevis (+30%) than in R. temporaria (+6%). Plasticity in rates of growth and development is beneficial to larvae in heterogeneous habitats as it allows a more rapid transition into the juvenile stage where rates of mortality are lower. Therefore, environmental stressors that increase endogenous TH levels and reduce temperature-dependent plasticity may increase risks and the vulnerability of anuran larvae. As TH status also influences metabolism, future studies should investigate whether reductions in physiological plasticity also increases the vulnerability of tadpoles to global change.  相似文献   

10.
Vonesh JR 《Oecologia》2005,143(2):280-290
While theoretical studies of the timing of key switch points in complex life cycles such as hatching and metamorphosis have stressed the importance of considering multiple stages, most empirical work has focused on a single life stage. However, the relationship between the fitness components of different life stages may be complex. Ontogenetic switch points such as hatching and metamorphosis do not represent new beginnings—carryover effects across stages can arise when environmental effects on the density and/or traits of early ontogenetic stages subsequently alter mortality or growth in later stages. In this study, I examine the effects of egg- and larval-stage predators on larval performance, size at metamorphosis, and post-metamorphic predation in the African tree frog Hyperolius spinigularis. I monitored the density and survival of arboreal H. spinigularis clutches in the field to estimate how much egg-stage predation reduced the input of tadpoles into the pond. I then conducted experiments to determine: (1) how reductions in initial larval density due to egg predators affect larval survival and mass and age at metamorphosis in the presence and absence of aquatic larval predators, dragonfly larvae, and (2) how differences in mass or age at metamorphosis arising from predation in the embryonic and larval environments affect encounters with post-metamorphic predators, fishing spiders. Reduction in larval densities due to egg predation tended to increase per capita larval survival, decrease larval duration and increase mass at metamorphosis. Larval predators decreased larval survival and had density-dependent effects on larval duration and mass at metamorphosis. The combined effects of embryonic and larval-stage predators increased mass at metamorphosis of survivors by 91%. Larger mass at metamorphosis may have immediate fitness benefits, as larger metamorphs had higher survival in encounters with fishing spiders. Thus, the effects of predators early in ontogeny can alter predation risk even two life stages later.  相似文献   

11.
A. Hamer  S. Lane  M. Mahony 《Oecologia》2002,132(3):445-452
The introduction of fish has decimated many amphibian populations through increased predation, primarily on their larvae. Some amphibian species now occupy marginal habitats as a response to the presence of introduced fish predators. Such habitats may include ephemeral water bodies where fish do not usually occur, although breeding in these suboptimal environments may incur some cost to a species if its larvae are not adapted to develop under these conditions. We investigated this scenario of amphibian decline using the endangered green and golden bell frog (Litoria aurea) and the introduced mosquitofish (Gambusia holbrooki) in a factorial experiment to determine the responses of tadpoles to declining water levels and the introduced predator. Tadpoles metamorphosed asynchronously but did not accelerate development in declining water or when housed with mosquitofish. Mass at metamorphosis was 30% less in declining water. Mass increased with time to metamorphosis in constant water-level treatments, but decreased in declining water. Tadpoles did not respond to mosquitofish and were therefore assumed to be naive to this predator. These results suggest that ephemeral habitats may be suboptimal for breeding, and tadpoles appear better suited to develop in permanent water bodies free of introduced fish. Intra-clutch variability in larval development (i.e. bet-hedging) may allow L. aurea to cope with unpredictable pond duration, whereby even permanent water bodies may occasionally dry out. The responses observed in L. aurea suggest that introduced fish may have reduced the suitability of permanent water bodies as breeding sites for other pond-breeding amphibian species. The use of less favourable ephemeral habitats as breeding sites may be responsible for some of the declines reported in amphibians since the 1970s.  相似文献   

12.
Thyroid hormone (TH) plays a causative role in anuran metamorphosis. This effect is presumed to be manifested through the regulation of gene expression by TH receptors (TRs). TRs can act as both activators and repressors of a TH-inducible gene depending upon the presence and absence of TH, respectively. We have been investigating the roles of TRs during Xenopus laevis development, including premetamorphic and metamorphosing stages. In this review, we summarize some of the studies on the TRs by others and us. These studies reveal that TRs have dual functions in frog development as reflected in the following two aspects. First, TRs function initially as repressors of TH-inducible genes in premetamorphic tadpoles to prevent precocious metamorphosis, thus ensuring a proper period of tadpole growth, and later as activators of these genes to activate the metamorphic process. Second, TRs can promote both cell proliferation and apoptosis during metamorphosis, depending upon the cell type in which they are expressed.  相似文献   

13.
A wide range of environmental xenobiotics that mimic hormones (endocrine-disrupting chemicals) may cause alterations in sexual development or reproductive function in aquatic organisms such as amphibians when exposed during early sensitive stages. We exposed tadpoles of the Common frog, Rana temporaria, from hatch to metamorphosis, to two different endocrine disruptors, the synthetic estrogen 17 alpha-ethinylestradiol and the fungicide prochloraz. The object of the study was to assess the effects of these two compounds on the sexual development of the tadpoles by investigating sex ratio, gonadal development, sex steroid concentrations and vitellogenin induction. Histology revealed that a large percentage of all groups were juvenile hermaphrodites at metamorphosis. Tadpoles exposed to 115 and 251 microg/L prochloraz showed a significant increased proportion of males. However, the testosterone concentrations were depressed in those groups. Ethinylestradiol in concentrations of 77 and 159 ng/L EE(2) increased whole-body calcium levels in a dose-dependent manner indicating induction of the egg yolk protein vitellogenin, verified also by gel electrophoresis. The study shows that ethinylestradiol may induce vitellogenesis and prochloraz may affect the sexual development in Common frogs.  相似文献   

14.
An anuran amphibian, South African clawed frog (Xenopus laevis), is used to study the immune system, as it possesses a set of acquired immune system represented by T and B lymphocytes and the immunoglobulins. The acquired immune system is impaired throughout the larva and the metamorphosis stage in the amphibians. On the other hand, the role of innate immune system in the tadpole remains unclear. Recently, insect Toll protein homologues, namely, Toll-like receptors (TLRs), have been identified as sensors recognizing microbe-pattern molecules in vertebrates. Whole-genome analysis of Xenopus tropicalis supported the existence of the tlr genes in the frog. In this study, we annotated 20 frog tlr gene nucleotide sequences from the latest genome assembly version 4.1 on the basis of homology and identified cDNAs of the predicted frog TLR proteins. Phylogenetic analysis showed that the repertoire of the frog TLRs consisted of both fish- and mammalian-type TLRs. We showed that the frog TLRs are constitutively expressed in the tadpole as well as in the adult frog. Our results suggest that tadpoles are protected from microbes by the innate system that includes TLRs, despite impaired acquired immune system in tadpoles. This is the first report on the properties of TLRs in the most primitive terrestrial animals like amphibia. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The performance of three genotypes (LL, LR, RR) of tadpoles resulting from the hybrid mating system of Rana lessonae (phenotype L, genotype LL) and Rana esculenta (phenotype E, genotype LR) was determined in artificial ponds. The effects of interspecific competition and pond drying on growth, development, and survival of tadpoles were used to measure the performance of genotypes and the relative fitness of offspring. Among the three genotypes, tadpoles from the homogametic mating RR had the lowest survival, growth, and development under all environmental conditions. Body size of the LL and LR genotype tadpoles at metamorphosis was reduced by competition and pond drying. Days to metamorphosis were also higher for the LL and LR genotype tadpoles in competition ponds. The proportion of individuals metamorphosing of each genotype was differentially lowered by competition and pond drying. The LL genotype produced more metamorphs than the LR genotype in the constant water level ponds, but the LR genotype produced more in drying ponds. In competition ponds, the LR genotype produced more metamorphs than the LL genotype, but the LL genotype produced more metamorphs in ponds without competition. The RR genotype produced no metamorphs in any of the experimental environments. Increased performance of LR offspring from the heterogametic mating, in harsh conditions, and reduced performance of RR offspring from the homogametic mating, even under favorable conditions, relative to the parental genotype (LL) suggests that the population dynamics of this hybridogenetic system is strongly dependent on mate choice in mixed populations and the subsequent pond environment females select for oviposition and larval development.  相似文献   

16.
Where organisms undergo radical changes in habitat during ontogeny, dramatic phenotypic reshaping may be required. However, physiological and functional interrelationships may constrain the extent to which an individual's phenotype can be equally well adapted to their habitat throughout the life cycle. The phenotypic response of tadpoles to the presence of a predator has been reported for several species of anuran but the potential post-metamorphic consequences have rarely been considered. We reared common frog Rana temporaria tadpoles in the presence or absence of a larval odonate predator, Aeshna juncea , and examined the consequences of the resulting phenotypic adjustment in the aquatic larval stage of the life cycle for the terrestrial juvenile phenotype. In early development tadpoles developed deeper tail fins and muscles in response to the predator and, in experimental trials, swam further than those reared in the absence of a predator. While the difference in swimming ability remained significant throughout the larval period, by the onset of metamorphosis we could no longer detect any differences in the morphological parameters measured. The corresponding post-metamorphic phenotypes also did not initially differ in terms of morphology. At 12 weeks post-metamorphosis, however, froglets that developed from predator-exposed tadpoles swam more slowly and less far than those that developed from tadpoles reared in the absence of predators, the opposite trend to that observed in the larval stage of the life cycle, and had narrower femurs. These results suggest that there may be long-term costs for subsequent life-history stages of tailoring the larval phenotype to prevailing environmental conditions.  相似文献   

17.
全球气候变暖引发栖息地干涸将对生活在水中的无尾类幼体提出了挑战。通过浙江丽水中华大蟾蜍(Bufo gargarizans)和黑眶蟾蜍(Duttaphrynus melanosticus)蝌蚪在实验条件下对不同水位变化的表型响应,检测表型可塑性的遗传性和环境近因性影响。结果表明,水位变化对中华大蟾蜍蝌蚪早期发育历期、头宽和体重影响不显著,对体长影响显著,其中逐减水位最大、恒低水位最小,慢波、恒高与快波、逐增水位依次减少;水位变化对黑眶蟾蜍蝌蚪早期发育历期、体长、头宽和体重影响均显著;发育历期以恒高水位最大,恒低水位最小;体长以逐减水位最大,恒低、快波和慢波水位显著偏小,逐增和快波水位居中;头宽以恒低水位最小,逐增水位居中,其余较大;体重以恒低水位最小、恒高水位最大,其余居中。水位变化对中华大蟾蜍蝌蚪的变态时间、体长、头宽和体重影响均不显著;水位变化对黑眶蟾蜍蝌蚪的变态时间、体长和体重影响均显著,对头宽影响不显著;恒低水位的变态时间最长,恒高水位的变态时间最短,其他水位变化之间差异不显著;恒高水位的体长最大,恒低和快波水位最小,其他居中;逐增和快波水位的体重最大,恒低水位最小。研究结果表明,繁殖季节不同的中华大蟾蜍和黑眶蟾蜍蝌蚪响应水位变化的表型可塑性差异显著,长期在容易发生干旱和水位变化的冬季繁殖的中华大蟾蜍蝌蚪的表型可塑性低,在雨水充沛的春季繁殖的黑眶蟾蜍蝌蚪的表型可塑性高,表现出表型可塑性的种间差异和遗传性;在早期发育过程中,两种蝌蚪体长的共同的表型变异与缺乏遗传基础的环境近因性影响有关;黑眶蟾蜍蝌蚪对低水位或水位下降作出减速分化的消极响应,响应程度与环境信号的强弱直接相关。  相似文献   

18.
黑斑侧褶蛙蝌蚪断尾后的补偿生长和发育研究   总被引:1,自引:0,他引:1  
樊晓丽  林植华 《生态学报》2020,40(6):2141-2148
动物在经历不利的生长条件或环境后往往出现补偿生长。研究了黑斑侧褶蛙(Pelophylax nigromaculatus)蝌蚪经历来自食蚊鱼(Gambusia affinis)捕食造成断尾损伤后的补偿生长模式、断尾损失对蝌蚪游泳能力以及变态时间与大小的影响。结果表明,经历捕食压力后,全尾组和1/3断尾组蝌蚪的体长显著大于1/2断尾组蝌蚪的体长,全尾组和1/3断尾组之间的蝌蚪体长差异不显著;第19天时,1/2断尾组蝌蚪经过补偿生长后体长显著大于全尾组蝌蚪,1/3断尾组与全尾组和1/2断尾组之间的蝌蚪体长差异均不显著;三个实验组之间蝌蚪尾长差异不显著;全尾组蝌蚪的疾游速显著大于1/2断尾组蝌蚪的疾游速,1/3断尾组蝌蚪的疾游速与全尾组和1/2断尾组之间差异不显著,表明严重断尾对蝌蚪疾游速产生了消极影响。三个实验组蝌蚪的变态时间和变态前后形态差异均不显著。黑斑侧褶蛙蝌蚪能够在变态前调整生长轨迹补偿早期捕食风险造成的生长损失,断尾损失并不影响变态时间与大小,断尾超过一半的蝌蚪经过补偿生长后仍要付出一定的运动代价。  相似文献   

19.
The effects on thyroid hormone-dependent gene biomarker responses of the persistent organochlorine pesticide metabolite 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) were investigated after exposure of 4-week-old European common frog (Rana temporaria) (stage 36) tadpoles to two (0.001 and 0.01 ppm) DDE concentrations. Total body weight, total length, and tail length and width increased after 3-day exposure to DDE. Expression patterns of genes encoding for growth hormone, thyroid-stimulating hormone (TSHβ) and thyroid hormone receptor (TRα and TRβ) isoforms were evaluated in the head, body and tail regions using a validated real-time polymerase chain reaction (PCR) method. The mRNA expression of growth hormone in the body, and TSHβ in the head showed significant DDE concentration-dependent decreases. While DDE caused variable effects on TRα mRNA steady-state, the expression of TRβ was significantly decreased in the tail by DDE in a concentration-specific manner. The effect of DDE exposure on TRβ mRNA expression showed a negative correlation with tail length and width during the exposure period. The unique pattern of a DDE-induced decrease of tail TRβ expression probably reflects the significant role of this thyroid hormone receptor isoform in tail re-absorption and overall metamorphosis in anuran species. Therefore, the present study shows that the evaluation of thyroid hormone-dependent genes may represent quantitative biomarkers of acute exposure to organochlorine pesticides in anuran species during critical developmental periods such as metamorphosis. Given the widespread environmental levels of DDT and its metabolites, these pollutants will remain a subject of concern and their effects on anuran species should be studied in more detail.  相似文献   

20.
Brain development shows high plasticity in response to environmental heterogeneity. However, it is unknown how environmental variation during development may affect brain architecture across life history switch points in species with complex life cycles. Previously, we showed that predation and competition affect brain development in common frog (Rana temporaria) tadpoles. Here, we studied whether larval environment had carry-over effects in brains of metamorphs. Tadpoles grown at high density had large optic tecta at metamorphosis, whereas tadpoles grown under predation risk had small diencephala. We found that larval density had a carry-over effect on froglet optic tectum size, whereas the effect of larval predation risk had vanished by metamorphosis. We discuss the possibility that the observed changes may be adaptive, reflecting the needs of an organism in given environmental and developmental contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号