首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelin-1 (ET-1) induces cardiac hypertrophy. Because Ca(2+) is a major second messenger of ET-1, the role of Ca(2+) in ET-1-induced hypertrophic responses in cultured cardiac myocytes of neonatal rats was examined. ET-1 activated the promoter of the beta-type myosin heavy chain gene (beta-MHC) (-354 to +34 base pairs) by about 4-fold. This activation was inhibited by chelation of Ca(2+) and the blocking of protein kinase C activity. Similarly, the beta-MHC promoter was activated by Ca(2+) ionophores and a protein kinase C activator. beta-MHC promoter activation induced by ET-1 was suppressed by pretreatment with the calmodulin inhibitor, W7, the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, KN62, and the calcineurin inhibitor, cyclosporin A. beta-MHC promoter activation by ET-1 was also attenuated by overexpression of dominant-negative mutants of CaMKII and calcineurin. ET-1 increased the activity of CaMKII and calcineurin in cardiac myocytes. Pretreatment with KN62 and cyclosporin A strongly suppressed ET-1-induced increases in [(3)H]phenylalanine uptake and in cell size. These results suggest that Ca(2+) plays a critical role in ET-1-induced cardiomyocyte hypertrophy by activating CaMKII- and calcineurin-dependent pathways.  相似文献   

2.
Endothelin-1 (ET-1) is an autocrine factor in the mammalian heart important in enhancing cardiac performance, protecting against myocardial ischemia, and initiating the development of cardiac hypertrophy. The ETA receptor is a seven-transmembrane G-protein-coupled receptor whose precise subcellular localization in cardiac muscle is unknown. Here we used fluorescein ET-1 and 125I-ET-1 to provide evidence for ET-1 receptors in cardiac transverse tubules (T-tubules). Moreover, the ETA receptor and downstream effector phospholipase C-beta 1 were co-localized within T-tubules using standard immunofluorescence techniques, and protein kinase C (PKC)-epsilon-enhanced green fluorescent protein bound reversibly to T-tubules upon activation. Localized photorelease of diacylglycerol further suggested compartmentation of PKC signaling, with release at the myocyte "surface" mimicking the negative inotropic effects of bath-applied PKC activators and "deep" release mimicking the positive inotropic effect of ET-1. The functional significance of T-tubular ET-1 receptors was further tested by rendering the T-tubule lumen inaccessible to bath-applied ET-1. Such "detubulated" cardiac myocytes showed no positive inotropic response to 20 nM ET-1, despite retaining both a nearly normal twitch response to field stimulation and a robust positive inotropic response to 20 nm isoproterenol. We propose that ET-1 enhances myocyte contractility by activating ETA receptor-phospholipase C-beta 1-PKC-epsilon signaling complexes preferentially localized in cardiac T-tubules. Compartmentation of ET-1 signaling complexes may explain the discordant effects of ET-1 versus bath applied PKC activators and may contribute to both the specificity and diversity of the cardiac actions of ET-1.  相似文献   

3.
4.
5.
6.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.  相似文献   

7.
Cardiac hypertrophy is a common phenomenon observed in progressive heart disease associated with heart failure. Insulin-like growth factor receptor II (IGF-IIR) has been much implicated in myocardial hypertrophy. Our previous studies have found that increased activities of signaling mediators, such as calcium/calmodulin-dependent protein kinase II (CaMKII) and calcineurin induces pathological hypertrophy. Given the critical roles played by CaMKII and calcineurin signaling in the progression of maladaptive hypertrophy, we anticipated that inhibition of CaMKII and calcineurin signaling may attenuate IGF-IIR-induced cardiac hypertrophy. The current study, therefore, investigated the effects of IGF-IIR activation on the CaMKII and calcineurin signaling and whether the combinatorial inhibition of the CaMKIIδ and calcineurin signaling could ameliorate IGF-IIR-induced pathological hypertrophy. In the present study, we induced IGF-IIR through the cardiomyocyte-specific transduction of IGFIIY27L via adeno-associated virus 2 (AAV2) to evaluate its effects on cardiac hypertrophy. Interestingly, it was observed that the activation of IGF-IIR signaling through IGFIIY27L induces significant hypertrophy of the myocardium and increased cardiac apoptosis and fibrosis. Moreover, we found that Leu27IGF-II significantly induced calcineurin and CaMKII expression. Furthermore and importantly, the combinatorial treatment with CaMKII and calcineurin inhibitors significantly alleviates IGF-IIR-induced hypertrophic responses. Thus, it could be envisaged that the inhibition of IGF-IIR may serve as a promising candidate for attenuating maladaptive hypertrophy. Both calcineurin and CaMKII could be valuable targets for developing treatment strategies against hypertension-induced cardiomyopathies.  相似文献   

8.
The cardiovascular benefit of fish oil in humans and experimental animals has been reported. Endothelin (ET)-1 is a well-known cardiac hypertrophic factor. However, although many studies link a fish oil extract, eicosapentaenoic acid (EPA), to cardiac protection, the effects of EPA on cardiac hypertrophy and underlying mechanism(s) are unclear. The present study investigated whether EPA prevents ET-1-induced cardiomyocyte hypertrophy; the potential pathways likely to underlie such an effect were also investigated. Cardiomyocytes were isolated from neonatal rat heart, cultured for 3 days, and then treated for 24 h with vehicle only (control), treated with 0.1 nM ET-1 only, or pretreated with 10 microM EPA and then treated with 0.1 nM ET-1. The cells were harvested, and changes in cell surface area, protein synthesis, expression of a cytoskeletal (alpha-actinin) protein, and cell signaling were analyzed. ET-1 induced a 97% increase in cardiomyocyte surface area, a 72% increase in protein synthesis rate, and an increase in expression of alpha-actinin and signaling molecule [transforming growth factor-beta 1 (TGF-beta 1), c-Jun NH2-terminal kinase (JNK), and c-Jun]. Development of these ET-1-induced cellular changes was attenuated by EPA. Moreover, the hypertrophied cardiomyocytes showed a 1.5- and a 1.7-fold increase in mRNA expression of atrial and brain natriuretic peptides, the classical molecular markers of cardiac hypertrophy, respectively; these changes were also suppressed by EPA. Here we show that ET-1 induces cardiomyocyte hypertrophy and expression of hypertrophic markers, possibly mediated by JNK and TGF-beta 1 signaling pathways. These ET-1-induced effects were blocked by EPA, a major fish oil ingredient, suggesting that fish oil may have beneficial protective effects on cardiac hypertrophy.  相似文献   

9.
Although Ca(2+)/calmodulin-dependent protein kinase II delta (CaMKIIδ) has been implicated in development of different phenotypes of myocardial ischaemia-reperfusion injury, its involvement in arrhythmogenesis and cardiac stunning is not sufficiently elucidated. Moreover, the mechanisms by which CaMKIIδ mediates disturbances in excitation-contraction coupling, are not exactly known. To investigate this, KN-93 (0.5 μmol/L), a CaMKII inhibitor, was administered before induction of global ischaemia and reperfusion in isolated Langendorff-perfused rat hearts. Expression of CaMKIIδ and the sarcollemal Ca(2+)-cycling proteins, known to be activated during reperfusion, was analyzed using immunoblotting. KN-93 reduced reperfusion-induced ectopic activity and the incidence of ventricular fibrillation. Likewise, the severity of arrhythmias was lower in KN-treated hearts. During the pre-ischaemia phase, neither inotropic nor chronotropic effects were elicited by KN-93, whereas post-ischaemic contractile recovery was significantly improved. Ischaemia-reperfusion increased the expression of CaMKIIδ and sodium-calcium exchanger (NCX1) proteins without any influence on the protein content of alpha 1c, a pore-forming subunit of L-type calcium channels (LTCCs). On the other hand, inhibition of CaMKII normalized changes in the expression of CaMKIIδ and NCX1. Taken together, CaMKIIδ seems to regulate its own turnover and to be an important component of cascade integrating NCX1, rather than LTCCs that promote ischaemia-reperfusion-induced contractile dysfunction and arrhythmias.  相似文献   

10.
11.
Pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide. Liver kinase B1 interacting protein 1 (LKB1IP) was identified as the binding protein of tumour suppressor LKB1. However, the role of LKB1IP in the development of pathological cardiac hypertrophy has not been explored. The aim of this study was to investigate the function of LKB1IP in cardiac hypertrophy in response to hypertrophic stimuli. We investigated the cardiac level of LKB1IP in samples from patients with heart failure and mice with cardiac hypertrophy induced by isoproterenol (ISO) or transverse aortic constriction (TAC). LKB1IP knockout mice were generated and challenged with ISO injection or TAC surgery. Cardiac function, hypertrophy and fibrosis were then examined. LKB1IP expression was significantly up-regulated on hypertrophic stimuli in both human and mouse cardiac samples. LKB1IP knockout markedly protected mouse hearts against ISO- or TAC-induced cardiac hypertrophy and fibrosis. LKB1IP overexpression aggravated ISO-induced cardiomyocyte hypertrophy, and its inhibition attenuated hypertrophy in vitro. Mechanistically, LKB1IP activated Akt signalling by directly targeting PTEN and then inhibiting its phosphatase activity. In conclusion, LKB1IP may be a potential target for pathological cardiac hypertrophy.  相似文献   

12.
一氧化氮在防止心肌肥厚反应中的作用及其机制   总被引:29,自引:0,他引:29  
Zhan CD 《生理科学进展》2000,31(4):322-324
本工作从整体和细胞水平探讨一氧化氮(NO)在防止心肌肥厚反应中的作用及其机制。压力超负荷心肌肥厚大鼠左心室肌NO含量减少。内源性NO可能通过非cGMP依赖机制减轻压力超负荷引起的心肌肥厚。在培养的新生大鼠心肌细胞中血管紧张素Ⅱ(AⅡ)、内皮素-1(ET-1)和去甲肾上腺素(NE)通过各自的受体和偶连的G蛋白,一方面引起心肌细胞肥大;另一方面抑制一氧化氮合酶(NOS)活性和NO生成。心肌细胞和非心肌  相似文献   

13.
Endothelin (ET)-1 has been implicated in the development of cardiac hypertrophy. We investigated the effect of pravastatin on development of ventricular hypertrophy in spontaneously hypertensive rats (SHR) and whether the attenuated hypertrophic effect was via reduced ET-1 expression. Normolipidemic SHR were treated with one of the following therapies for 8 wk: vehicle, the nonselective ET receptor antagonists bosentan, pravastatin, mevalonate, hydralazine, or combination of pravastatin + mevalonate from the age of 8 wk at the very early stage of cardiac hypertrophy. Treatment with bosentan and pravastatin significantly decreased left ventricular mass index for body weight and cardiomyocyte sizes isolated by enzymatic dissociation. The myocardial ET-1 levels and preproET-1 mRNA assessed using real-time quantitative RT-PCR were significantly higher (both P < 0.001) in the SHR compared with Wistar-Kyoto rats. The increased tissue ET-1 levels can be inhibited after pravastatin administration. Immunohistochemical analysis confirmed the changes of ET-1. Left ventricular mass index for body weight correlated positively with tissue ET-1 levels (P = 0.0004). A dissociation between the effects of blood pressure and cardiac structure was noted, because pravastatin and hydralazine reduced arterial pressure similarly. Pravastatin-induced effects were reversed by the addition of mevalonate. In conclusion, these results suggest a crucial role of cardiac endothelin system in the early development of ventricular hypertrophy in the SHR. Pravastatin is endowed with cardiac antihypertropic properties that are independent of its hemodynamic and hypolipidemic effects and appear to be related to their capacity to decrease cardiac ET-1 levels, which is linked to mevalonate metabolism.  相似文献   

14.

Purpose

To asses if tennis at prepubertal age elicits the hypertrophy of dominant arm muscles.

Methods

The volume of the muscles of both arms was determined using magnetic resonance imaging (MRI) in 7 male prepubertal tennis players (TP) and 7 non-active control subjects (CG) (mean age 11.0±0.8 years, Tanner 1–2).

Results

TP had 13% greater total muscle volume in the dominant than in the contralateral arm. The magnitude of inter-arm asymmetry was greater in TP than in CG (13 vs 3%, P<0.001). The dominant arm of TP was 16% greater than the dominant arm of CG (P<0.01), whilst non-dominant arms had similar total muscle volumes in both groups (P = 0.25), after accounting for height as covariate. In TP, dominant deltoid (11%), forearm supinator (55%) and forearm flexors (21%) and extensors (25%) were hypertrophied compared to the contralateral arm (P<0.05). In CG, the dominant supinator muscle was bigger than its contralateral homonimous (63%, P<0.05).

Conclusions

Tennis at prepubertal age is associated with marked hypertrophy of the dominant arm, leading to a marked level of asymmetry (+13%), much greater than observed in non-active controls (+3%). Therefore, tennis particpation at prepubertal age is associated with increased muscle volumes in dominant compared to the non-dominant arm, likely due to selectively hypertrophy of the loaded muscles.  相似文献   

15.
Wu B  Wang TH  Pan JY  Zhu XN  Zhan CY 《生理学报》1998,50(1):87-93
内皮系-1(ET-1)是一种强的生长因子,并诱导心肌细胞肥大反应。在本实验中,我们探讨了G蛋白、蛋白激酶C(PKC)和Na+-H+交换在ET-1诱导的培养新生大鼠心肌细胞肥大反应中的作用。ET-1(10-10~10-7mol/L)促进3H-亮氨酸掺入,增加细胞蛋白质的含量和心肌细胞的表面积,且呈剂量依赖性,它们的EC50分别为5.2×10-10,5.2×10-10和7.3×10-10mol/L。用蛋白激酶C(PKC)抑制剂,Staurosporin(2nmol/L)预处理心肌细胞,可完全阻断ET-1诱导的心肌细胞的这些肥大反应,而蛋白激酶C激动剂,佛波酸酯(PMA)(10-8~10-6mol/L)呈剂量依赖性促进心肌细胞的肥大反应。用Na+-H+交换抑制剂,氨氯毗咪(10-4mol/L)预处理心肌细胞,可抑制ET-1诱导的心肌细胞肥大反应,但不影响PMA诱导的心肌细胞肥大反应。百日咳毒素(150ng/ml)预处理心肌细胞,可明显抑制ET-1诱导的心肌细胞肥大反应。这些结果提示,ET-1诱导的培养新生大鼠心肌细胞肥大反应是与百日咳毒素敏感的G蛋白相耦联,蛋白激酶C和Na+.H+交换可能在ET-1诱导的心肌细胞肥大反应中是重要的细胞内信使转导途径。  相似文献   

16.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a new promising target for prevention and treatment of cardiac hypertrophy and heart failure. There are three δ isoforms of CaMKII in the heart and previous studies focused primarily on δB and δC types. Here we report the δA isoform of CaMKII is also critically involved in cardiac hypertrophy. We found that δA was significantly upregulated in pathological cardiac hypertrophy in both neonatal and adult models. Upregulation of δA was accompanied by cell enlargement, sarcomere reorganization and reactivation of various hypertrophic cardiac genes including atrial natriuretic factor (ANF) and β-myocin heavy chain (β-MHC). Studies further indicated the pathological changes were largely blunted by silencing the δA gene and an underlying mechanism indicated selective interference with the HDAC4-MEF2 signaling pathway. These results provide new evidence for selective interfering cardiac hypertrophy and heart failure when CaMKII is considered as a therapeutic target.  相似文献   

17.
The mechanism(s) responsible for beta2-adrenergic receptor-mediated skeletal muscle and cardiac hypertrophy remains undefined. This study examined whether calcium influx through L-type calcium channels contributed to the development of cardiac and skeletal muscle (plantaris; gastrocnemius; soleus) hypertrophy during an 8-day treatment with the beta2-adrenergic receptor agonist clenbuterol. Concurrent blockade of L-type calcium channels with nifedipine did not reverse the hypertrophic action of clenbuterol. Moreover, nifedipine treatment alone resulted in both cardiac and soleus muscle hypertrophy (6% and 7%, respectively), and this effect was additive to the clenbuterol-mediated hypertrophy in the heart and soleus muscles. The hypertrophic effects of nifedipine were not associated with increases in total beta-adrenergic receptor density, nor did nifedipine reverse clenbuterol-mediated beta-adrenergic receptor downregulation in either the left ventricle or soleus muscle. Both nifedipine and clenbuterol-induced hypertrophy increased total protein content of the soleus and left ventricle, with no change in protein concentration. In conclusion, our results support the hypothesis that beta2-adrenergic receptor agonist-induced muscle hypertrophy is mediated by mechanisms other than calcium influx through L-type calcium channels.  相似文献   

18.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   

19.
Insulin-like growth factor-1 (IGF-1) and insulin stimulate cardiac growth and contractility. Recent evidence suggests a relationship between essential hypertension, left ventricular hypertrophy, and circulating IGF-1 levels. Advanced age alters cardiac function in a manner similar to hypertension. The aim of this investigation was to evaluate the effects of IGF-1 and insulin on the force generating capacity of cardiac muscle in hypertension and the influence of age on this response. Contractile responses to IGF-1 and insulin were examined using papillary muscles from Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) at 10 and 25 weeks of age. Muscles were electrically stimulated at 0.5 Hz, and contractile properties, including peak tension development (PTD), time-to-peak tension, time-to-90% relaxation, and the maximal velocities of contraction and relaxation, were evaluated. PTD was similar in WKY and SHR myocardium at both age groups. At 10 weeks of age, IGF-1 (1-500 ng/ml) caused a dose-dependent increase in PTD in WKY but not SHR myocardium, whereas insulin (1-500 nM) had no effect on PTD in either group. At 25 weeks of age, the positive inotropic effect of IGF-1 was attenuated in the WKY group, and IGF-1 exerted no inotropic action in the SHR group. Pretreatment with the nitric oxide synthase inhibitor, N-omega-nitro-L-arginine methyl ester (L-NAME, 100 microM), did not alter the IGF-1-induced positive inotropic response in 10-week-old WKY myocardium, whereas it unmasked a positive inotropic action in muscles from age-matched SHR animals. At 25 weeks of age, L-NAME abolished IGF-1-induced a positive inotropic response in WKY myocardium, and did not unmask an IGF-induced inotropic response in SHR myocardium. Our results suggest that alterations in nitric oxide modulation of IGF-1-induced contraction may underlie resistance to this inotropic peptide with advancing age, and/or hypertension.  相似文献   

20.
Cardiac hypertrophy is formed in response to hemodynamic overload. Although a variety of factors such as catecholamines, angiotensin II (AngII), and endothelin-1 (ET-1) have been reported to induce cardiac hypertrophy, little is known regarding the factors that inhibit the development of cardiac hypertrophy. Production of atrial natriuretic peptide (ANP) is increased in the hypertrophied heart and ANP has recently been reported to inhibit the growth of various cell types. We therefore examined whether ANP inhibits the development of cardiac hypertrophy. Pretreatment of cultured cardiomyocytes with ANP inhibited the AngII- or ET-1-induced increase in the cell size and the protein synthesis. ANP also inhibited the AngII- or ET-1-induced hypertrophic responses such as activation of mitogen-activated protein kinase (MAPK) and induction of immediate early response genes and fetal type genes. To determine how ANP inhibits cardiomyocyte hypertrophy, we examined the mechanism of ANP-induced suppression of the MAPK activation. ANP strongly induced expression of MAPK phosphatase-1 (MKP-1) and overexpression of MKP-1 inhibited AngII- or ET-1-induced hypertrophic responses. These growth-inhibitory actions of ANP were mimicked by a cyclic GMP analog 8-bromo-cyclic GMP. Taken together, ANP directly inhibits the growth factor-induced cardiomyocyte hypertrophy at least partly via induction of MKP-1. Our present study suggests that the formation of cardiac hypertrophy is regulated not only by positive but by negative factors in response to hemodynamic load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号