首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncorhynchus mykiss have a diverse array of life history types, and understanding the relationship among types is important for management of the species. Patterns of gene flow between sympatric freshwater resident O. mykiss, commonly known as rainbow trout, and anadromous O. mykiss, commonly known as steelhead, populations are complex and poorly understood. In this study, we attempt to determine the occurrence and pathways of gene flow and the degree of genetic similarity between sympatric resident and anadromous O. mykiss in three river systems, and investigate whether resident O. mykiss are producing anadromous offspring in these rivers, two of which have complete barriers to upstream migration. We found that the population structure of the O. mykiss in these rivers appears to be influenced more by the presence of a barrier to upstream migration than by life history type. The sex ratio of resident O. mykiss located above a barrier, and smolts captured in screw traps was significantly skewed in favor of females, whereas the reverse was true below the barriers, suggesting that male resident O. mykiss readily migrate downstream over the barrier, and that precocious male maturation may be occurring in the anadromous populations. Through paternity analyses, we also provide direct confirmation that resident O. mykiss can produce offspring that become anadromous. Most (89%) of the resident O. mykiss that produced anadromous offspring were males. Our results add to the growing body of evidence that shows that gene flow does readily occur between sympatric resident and anadromous O. mykiss life history types, and indicates that resident O. mykiss populations may be a potential repository of genes for the anadromous life history type.  相似文献   

2.
The species Oncorhynchus mykiss is characterized by a complex life history that presents a significant challenge for population monitoring and conservation management. Many factors contribute to genetic variation in O. mykiss populations, including sympatry among migratory phenotypes, habitat heterogeneity, hatchery introgression, and immigration (stray) rates. The relative influences of these and other factors are contingent on characteristics of the local environment. The Rock Creek subbasin in the middle Columbia River has no history of hatchery supplementation and no dams or artificial barriers. Limited intervention and minimal management have led to a dearth of information regarding the genetic distinctiveness of the extant O. mykiss population in Rock Creek and its tributaries. We used 192 SNP markers and collections sampled over a 5‐year period to evaluate the temporal and spatial genetic structures of O. mykiss between upper and lower watersheds of the Rock Creek subbasin. We investigated potential limits to gene flow within the lower watershed where the stream is fragmented by seasonally dry stretches of streambed, and between upper and lower watershed regions. We found minor genetic differentiation within the lower watershed occupied by anadromous steelhead (FST = 0.004), and evidence that immigrant influences were prevalent and ubiquitous. Populations in the upper watershed above partial natural barriers were highly distinct (FST = 0.093) and minimally impacted by apparent introgression. Genetic structure between watersheds paralleled differences in local demographics (e.g., variation in size), migratory restrictions, and habitat discontinuity. The evidence of restricted gene flow between putative remnant resident populations in the upper watershed and the admixed anadromous population in the lower watershed has implications for local steelhead productivity and regional conservation.  相似文献   

3.
Life history polymorphisms provide ecological and genetic diversity important to the long term persistence of species responding to stochastic environments. Oncorhynchus mykiss have complex and overlapping life history strategies that are also sympatric with hatchery populations. Passive integrated transponder (PIT) tags and parentage analysis were used to identify the life history, origin (hatchery or wild) and reproductive success of migratory rainbow/steelhead for two brood years after barriers were removed from a small stream. The fluvial rainbow trout provided a source of wild genotypes to the colonizing population boosting the number of successful spawners. Significantly more parr offspring were produced by anadromous parents than expected in brood year 2005, whereas significantly more parr offspring were produced by fluvial parents than expected in brood year 2006. Although hatchery steelhead were prevalent in the Methow Basin, they produced only 2 parr and no returning adults in Beaver Creek. On average, individual wild steelhead produced more parr offspring than the fluvial or hatchery groups. Yet, the offspring that returned as adult steelhead were from parents that produced few parr offspring, indicating that high production of parr offspring may not be related to greater returns of adult offspring. These data in combination with other studies of sympatric life histories of O. mykiss indicate that fluvial rainbow trout are important to the conservation and recovery of steelhead and should be included in the management and recovery efforts.  相似文献   

4.
Migratory behaviour patterns in animals are controlled by a complex genetic architecture. Rainbow trout (Oncorhynchus mykiss) is a salmonid fish that spawns in streams but exhibits three primary life history pathways: stream‐resident (fluvial), lake‐migrant (adfluvial) and ocean‐migrant (anadromous). Previous studies examining fluvial and anadromous Omykiss have identified several genes associated with life history divergence including the presence of an inversion complex within chromosome 5 (Omy05) that appears to maintain a suite of linked genes controlling migratory behaviour. However, adfluvial trout are migratory without being anadromous, and the genetic basis for this life history has not been investigated from evolutionary perspectives. We sampled wild, native nonanadromous rainbow trout occupying connected stream and lake habitats in a southwest Alaskan watershed to determine whether these fish exhibit genetic divergence between fluvial and adfluvial ecotypes, and whether that divergence parallels that documented in fluvial and anadromous O. mykiss. Data from restriction site‐associated DNA (RAD) sequencing revealed an association between frequencies of both the Omy05 inversion complex and other single nucleotide polymorphisms (SNPs) with habitat type (stream or lake), supporting the genetic divergence of fluvial and adfluvial individuals in sympatry. The presence of a genetic basis for migration into lakes, analogous to that documented for anadromy, indicates that the adfluvial ecotype must be recognized separately from the fluvial form of Omykiss even though neither is anadromous. These results highlight the genetic architecture underlying migration and the importance of chromosomal inversions in promoting and sustaining intraspecific diversity.  相似文献   

5.
Genetic structure (six microsatellites) and gene flow were examined among anadromous (steelhead; n  = 326), resident (rainbow trout; n  = 52), and mixed ( n  = 407) Oncorhynchus mykiss life‐history forms collected from the major drainages the mainstem Walla Walla River and the Touchet River within the Walla Walla River sub‐basin, Washington, U.S.A. Genetic structure was detected between the two major drainages. Exact tests, F ST, multi‐locus assignment tests and a neighbour‐joining dendrogram revealed genetic divergence between sympatric reference populations of adult steelhead and resident rainbow trout in the mainstem Walla Walla River, but not in the Touchet River. Tests of Hardy‐Weinberg equilibrium indicated anadromous and resident O. mykiss reference populations were in equilibrium, but many of the mixed life‐history collections were out of equilibrium. Populations out of equilibrium in the mainstem Walla Walla River appeared to be admixtures as confirmed by multi‐locus assignment tests. This is evidence of genetic divergence probably resulting from assortative mating between life‐history forms or out‐of‐basin stocking practices.  相似文献   

6.
Rapid adaptation to novel environments may drive changes in genomic regions through natural selection. Such changes may be population-specific or, alternatively, may involve parallel evolution of the same genomic region in multiple populations, if that region contains genes or co-adapted gene complexes affecting the selected trait(s). Both quantitative and population genetic approaches have identified associations between specific genomic regions and the anadromous (steelhead) and resident (rainbow trout) life-history strategies of Oncorhynchus mykiss. Here, we use genotype data from 95 single nucleotide polymorphisms and show that the distribution of variation in a large region of one chromosome, Omy5, is strongly associated with life-history differentiation in multiple above-barrier populations of rainbow trout and their anadromous steelhead ancestors. The associated loci are in strong linkage disequilibrium, suggesting the presence of a chromosomal inversion or other rearrangement limiting recombination. These results provide the first evidence of a common genomic basis for life-history variation in O. mykiss in a geographically diverse set of populations and extend our knowledge of the heritable basis of rapid adaptation of complex traits in novel habitats.  相似文献   

7.
In order to increase the size of declining salmonid populations, supplementation programmes intentionally release fish raised in hatcheries into the wild. Because hatchery-born fish often have lower fitness than wild-born fish, estimating rates of gene flow from hatcheries into wild populations is essential for predicting the fitness cost to wild populations. Steelhead trout (Oncorhynchus mykiss) have both freshwater resident and anadromous (ocean-going) life history forms, known as rainbow trout and steelhead, respectively. Juvenile hatchery steelhead that 'residualize' (become residents rather than go to sea as intended) provide a previously unmeasured route for gene flow from hatchery into wild populations. We apply a combination of parentage and grandparentage methods to a three-generation pedigree of steelhead from the Hood River, Oregon, to identify the missing parents of anadromous fish. For fish with only one anadromous parent, 83% were identified as having a resident father while 17% were identified as having a resident mother. Additionally, we documented that resident hatchery males produced more offspring with wild anadromous females than with hatchery anadromous females. One explanation is the high fitness cost associated with matings between two hatchery fish. After accounting for all of the possible matings involving steelhead, we find that only 1% of steelhead genes come from residualized hatchery fish, while 20% of steelhead genes come from wild residents. A further 23% of anadromous steelhead genes come from matings between two resident parents. If these matings mirror the proportion of matings between residualized hatchery fish and anadromous partners, then closer to 40% of all steelhead genes come from wild trout each generation. These results suggest that wild resident fish contribute substantially to endangered steelhead 'populations' and highlight the need for conservation and management efforts to fully account for interconnected Oncorhynchus mykiss life histories.  相似文献   

8.
9.
Orchid seeds are minute, dust-like, wind-borne and, thus, would seem to have the potential for long-distance dispersal. Based on this perception, one may predict near-random spatial genetic structure within orchid populations. In reality we do not know much about seed dispersal in orchids and the few empirical studies of fine-scale genetic structure have revealed significant genetic structure at short distances (< 5m), suggesting that most seeds of orchids fall close to the maternal plant. To obtain more empirical data on dispersal, Ripley’s L(d)-statistics, spatial autocorrelation analyses (coancestry, fij analyses) and Wright’s F statistics were used to examine the distribution of individuals and the genetic structure within two populations of the terrestrial orchid Orchis cyclochila in southern Korea. High levels of genetic diversity (He = 0.210) and low between-population variation were found (FST = 0.030). Ripley’s L(d)-statistics indicated significant aggregation of individuals, and patterns varied depending on populations. Spatial autocorrelation analysis revealed significant positive genetic correlations among individuals located <1 m, with mean fij values expected for half sibs. This genetic structure suggests that many seeds fall in the immediate vicinity of the maternal plant. The finding of significant fine-scale genetic structure, however, does not have to preclude the potential for the long distance dispersal of seeds. Both the existence of fine-scale genetic structure and low FST are consistent with a leptokurtic distribution of seed dispersal distances with a very flat tail.  相似文献   

10.
Biological invasions provide opportunities to examine contemporary evolutionary processes in novel environments. American shad, an anadromous fish native to the Atlantic Coast of North America, was introduced to California in 1871 and established spawning populations along the Pacific Coast that may provide insights into the dynamics of dispersal, colonization, and the establishment of philopatry. Using 13 neutral microsatellite loci we genotyped anadromous, freshwater resident and landlocked American shad from 14 locations along the US Pacific Coast to resolve population genetic structure. We observed significant differences in multilocus allele frequency distributions in nearly all (61/66; 92%) pairwise comparisons of non-native anadromous, freshwater resident and landlocked populations, and detected significant genetic differentiation for most (55/66; 83%) of these comparisons. Genetic divergence between landlocked and anadromous populations is due to genetic drift in isolation because of a physical migration barrier. However, some reproductive isolating mechanism maintains genetic differentiation between sympatric populations in the Columbia River exhibiting alternative life history strategies (i.e. anadromous vs. ‘freshwater-type’). Non-native populations possessed genetic variants that were not observed in the species’ native range and were strongly differentiated from Atlantic Coast populations (\({\text{G}}^{{\prime }}_{\text{ST}}\)?=?0.218). Our results indicate that philopatry became established shortly after dispersal and colonization along the Pacific Coast. This study contributes to our understanding of dynamic evolutionary processes during invasions.  相似文献   

11.
Steelhead (Oncorhynchus mykiss) populations have declined dramatically in many parts of their range in North America, most critically in Southern California, where these anadromous trout are now classified as ‘Endangered’ under the United States Endangered Species Act. The widespread introduction of hatchery rainbow trout, the domesticated freshwater resident form of the species O. mykiss, is one factor threatening the long-term persistence of native steelhead and other trout populations. To identify where native fish of coastal steelhead lineage remained, we performed a population genetic analysis of microsatellite and SNP genotypes from O. mykiss populations at the extreme southern end of their range in Southern California, USA and Baja California, Mexico. In the northern part of this region, nearly all populations appeared to be primarily descendants of native coastal steelhead. However, in the southern, more urbanized part of this region, the majority of the sampled populations were derived primarily from hatchery trout, indicating either complete replacement of native fish or a strong signal of introgression overlaying native ancestry. Nevertheless, these genetically introgressed populations represent potentially critical genetic resources for the continued persistence of viable networks of O. mykiss populations, given the limited native ancestry uncovered in this region and the importance of genetic variation in adaptation. This study elucidates the geographic distribution of native trout populations in this region, and serves as a baseline for evaluating the impacts of hatchery trout on native O. mykiss populations and the success of steelhead conservation and recovery efforts.  相似文献   

12.
In 1926 cannery workers from the Wakefield Fisheries Plant at Little Port Walter in Southeast Alaska captured small trout, Oncorhynchus mykiss, from a portion of Sashin Creek populated with a wild steelhead (anadromous O. mykiss) run. They planted them into Sashin Lake which had been fishless to that time and separated from the lower stream by two large waterfalls that prevented upstream migration of any fish. In 1996 we sampled adult steelhead from the lower creek and juvenile O. mykiss from an intermediate portion of the creek, Sashin Lake, and five lakes that had been stocked with fish from Sashin Lake in 1938. Tissue samples from these eight populations were compared for variation in: microsatellite DNA at 10 loci; D-loop sequences in mitochondrial DNA; and allozymes at 73 loci known to be variable in steelhead. Genetic variability was consistently less in the Sashin Lake population and all derived populations than in the source anadromous population. The cause of this reduction is unknown but it is likely that very few fish survived to reproduce from the initial transplant in 1926. Stockings of 50–85 fish into five other fishless lakes in 1938 from Sashin Lake did not result in a similar dramatic reduction in variability. We discuss potential explanations for the observed patterns of genetic diversity in relation to the maintenance of endangered anadromous O. mykiss populations in freshwater refugia.  相似文献   

13.
This study evaluated how the maternal migratory tactic in a partially anadromous population of Oncorhynchus mykiss may influence the early energetic status of their offspring. Total lipid content variation (% dry mass) of recently emerged fry caught in the Santa Cruz River, Argentina, was evaluated as a function of their maternal origin (anadromous v. resident) and fork length (LF). Lipid content of fry decreased with LF and was higher for offspring of anadromous mothers.  相似文献   

14.
15.
The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater‐resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater‐resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine‐scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater‐resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater‐resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers.  相似文献   

16.
Rainbow and steelhead trout (Oncorhynchus mykiss), among other salmonid fishes, exhibit tremendous life history diversity, foremost of which is variation in migratory propensity. While some individuals possess the ability to undertake an anadromous marine migration, others remain resident in freshwater throughout their life cycle. Those that will migrate undergo tremendous physiological, morphological, and behavioral transformations in a process called smoltification which transitions freshwater-adapted parr to marine-adapted smolts. While the behavior, ecology, and physiology of smoltification are well described, our understanding of the proximate genetic mechanisms that trigger the process are not well known. Quantitative genetic analyses have identified several genomic regions associated with smoltification and migration-related traits within this species. Here we investigate the divergence in gene expression of 18 functional and positional candidate genes for the smoltification process in the brain, gill, and liver tissues of migratory smolts, resident parr, and precocious mature male trout at the developmental stage of out-migration. Our analysis reveals several genes differentially expressed between life history classes and validates the candidate nature of several genes in the parr-smolt transformation including Clock1α, FSHβ, GR, GH2, GHR1, GHR2, NDK7, p53, SC6a7, Taldo1, THRα, THRβ, and Vdac2.  相似文献   

17.
Anadromy is a defining trait in salmonid fishes but it is expressed to different extents among the species in the family, as reviewed in a classic paper by Rounsefell (1958). The present paper re-examines the subject, assessing the degree of anadromy within the genus Oncorhynchus, using Rounsefell’s six criteria: extent of migrations at sea, duration of stay at sea, state of maturity attained at sea, spawning habits and habitats, post-spawning mortality, and occurrence of freshwater forms of the species. The genus ranges from pink salmon (O. gorbuscha), the most fully anadromous species in the family, to entirely non-anadromous species closely related to rainbow trout (O. mykiss), including Mexican golden trout (O. chrysogaster), Gila and Apache trout (O. gilae), and sub-species of cutthroat trout (O. clarki). This paper provides updated information on anadromy and marine migration patterns, emphasizing the iteroparous species, cutthroat (O. clarki) and rainbow (O. mykiss) trout. These two species display widely ranging patterns of anadromy, including truly “landlocked” populations and residents with easy access to the sea. Anadromous rainbow trout (known as steelhead) populations also vary greatly in their distribution at sea, incidence of repeat spawning, and associated traits. We conclude, as did Rounsefell, that anadromy is not a single trait with two conditions (anadromous or non-anadromous). Rather, it reflects a suite of life history traits that are expressed as points along continua for each species and population. Further research is needed in the marine ecology of all species but especially trout, as they are less well known but apparently more variable in patterns of anadromy and life history than salmon species.  相似文献   

18.
When natural populations exchange migrants at a rate proportional to their geographic distance, population genetics theory leads to the expectation of a pattern of isolation-by-distance (IBD), whereby geographic and genetic distance are correlated. However, the presence or absence of such patterns in modern populations may not fully reflect the historical relationships among those populations. Thus, historical samples, collected prior to modern human impacts, can often provide a critical baseline for comparison with modern populations. Steelhead, the anadromous form of rainbow trout, Oncorhynchus mykiss, are native to western North America and are endangered or threatened throughout most of California, near the southern extent of their native range. Population samples of steelhead collected in 1897 and 1909 in Central California rivers provided the opportunity to evaluate the historical genetic composition and population structure of these threatened fish. Here we show that these steelhead populations had a historically strong correlation between genetic and geographic distance that has been virtually erased in modern populations, suggesting that current relationships among modern steelhead populations are no longer reflective of natural migratory pathways. This demonstrates the critical role of migration in maintaining population relationships of threatened species and highlights the importance of natural history museums in providing historical baseline information.  相似文献   

19.
Brook charr, Salvelinus fontinalis, often display alternate life history styles in coastal areas. In the Laval River, some brook charr remain freshwater residents, while others undergo seasonal migrations between freshwater and saltwater environments. In the present paper, we examined physiological (electrolyte concentrations, gill Na+, K+-ATPase activity, and thyroid hormone levels) as well as genetic differences (neutral genetic markers) between anadromous and river-resident fish from the Laval River. We also examined how artificial rearing conditions affected seasonal variations in the osmoregulatory physiology of a domestic strain derived from wild anadromous fish. Sympatric anadromous and resident forms of brook charr of the Laval River exhibited differences in gill Na+, K+-ATPase activity, plasma thyroxine (T4), and triidothyronine (T3) concentrations. In domestic anadromous charr, rearing conditions during development had no negative impact on osmoregulatory ability or on gill Na+, K+-ATPase activity. These results argued for an important hereditary component of gill Na+, K+-ATPase activity. However, the spring increase in T4 was present only in wild fish. Significant differences observed at microsatellite loci further suggested that at least some level of reproductive isolation may have occurred between anadromous and resident charr in the Laval River.  相似文献   

20.
Anthropogenic habitat fragmentation — ubiquitous in modern ecosystems — has strong impacts on gene flow and genetic population structure. Reptiles may be particularly susceptible to the effects of fragmentation because of their extreme sensitivity to environmental conditions and limited dispersal. We investigate fine-scale spatial genetic structure, individual relatedness, and sex-biased dispersal in a large population of a long-lived reptile (tuatara, Sphenodon punctatus) on a recently fragmented island. We genotyped individuals from remnant forest, regenerating forest, and grassland pasture sites at seven microsatellite loci and found significant genetic structuring (RST = 0.012) across small distances (< 500 m). Isolation by distance was not evident, but rather, genetic distance was weakly correlated with habitat similarity. Only individuals in forest fragments were correctly assignable to their site of origin, and individual pairwise relatedness in one fragment was significantly higher than expected. We did not detect sex-biased dispersal, but natural dispersal patterns may be confounded by fragmentation. Assignment tests showed that reforestation appears to have provided refuges for tuatara from disturbed areas. Our results suggest that fine-scale genetic structuring is driven by recent habitat modification and compounded by the sedentary lifestyle of these long-lived reptiles. Extreme longevity, large population size, simple social structure and random dispersal are not strong enough to counteract the genetic structure caused by a sedentary lifestyle. We suspect that fine-scale spatial genetic structuring could occur in any sedentary species with limited dispersal, making them more susceptible to the effects of fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号