首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the major human milk fat globular membrane proteins was carried out using proteomic techniques comprising two-dimensional polyacrylamide gel electrophoresis, followed by in situ PNGase F and trypsin digestion. Matrix-assisted laser desorption/ionization quadrupole time-of-flight and electrospray ionization mass spectrometry identified seven major protein components: alpha-lactalbumin, lysozyme precursor, beta-casein, clusterin, lactotransferrin, polymeric immunoglobulin receptor precursor, and human milk fat globule EGF-factor 8 protein. Sequence information on the protein-associated glycans was determined by matrix-assisted laser desorption-ionization quadrupole time-of-flight hybrid mass spectrometry. This glycan analysis revealed interesting fucosylation branching patterns which may be influential in maternal protection of the newborn against bacterial and viral pathogenic attack.  相似文献   

2.
Functional genomics by mass spectrometry   总被引:10,自引:0,他引:10  
Andersen JS  Mann M 《FEBS letters》2000,480(1):25-31
Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene function, mass spectrometry is the method of choice. Mass spectrometry can now identify proteins with very high sensitivity and medium to high throughput. New instrumentation for the analysis of the proteome has been developed including a MALDI hybrid quadrupole time of flight instrument which combines advantages of the mass finger printing and peptide sequencing methods for protein identification. New approaches include the isotopic labeling of proteins to obtain accurate quantitative data by mass spectrometry, methods to analyze peptides derived from crude protein mixtures and approaches to analyze large numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes.  相似文献   

3.
Mapping the proteome of barrel medic (Medicago truncatula)   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

4.
We performed a proteomic analysis of monocytes primed by lipopolysaccharide (LPS) in vitro, using two-dimensional gels stained with Coomassie blue. We found 16 proteins of approximately 500 detected that either increased or decreased in abundance as a result of priming by LPS (14 with P 相似文献   

5.
Protein expression in unfed larvae of the cattle tick, Boophilus microplus, was characterized using gel electrophoresis and mass spectrometry in an effort to assemble a database of proteins produced at this stage of development. Soluble and insoluble proteins were extracted and resolved by two-dimensional (2D) gel electrophoresis. Twenty abundantly expressed larval proteins were selected for peptide mass mapping and for peptide sequencing by matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) and quadrupole time-of-flight (Q-ToF) tandem mass spectrometry (MS), respectively. Only one protein, tropomyosin, was unequivocally identified from its peptide mass map. Ten proteins were assigned putative identities based on BLAST searching of heterologous databases with peptide sequences. These included a cytoskeletal protein (troponin I), multiple cuticular proteins, a glycine-rich salivary gland-associated protein and proteins with a presumed housekeeping role (arginine kinase, a high-mobility group protein and a small heat shock protein). Eight additional proteins were identified by searching translated open reading frames of a B. microplus EST database (unpublished): putative fatty-acid binding protein, thioredoxin, glycine-rich salivary gland protein and additional cuticular proteins. One remaining protein was not identifiable, suggesting it may be a novel molecule. The ongoing assembly of this database contributes to our understanding of proteins expressed by the tick and provides a resource that can be mined for molecules that play a role in tick-host interactions.  相似文献   

6.
Salivary glands of tsetse flies (Diptera: Glossinidiae) contain molecules that are involved in preventing blood clotting during feeding as well as molecules thought to be intimately associated with trypanosome development and maturation. Here we present a protein microchemical analysis of the major soluble proteins of the salivary glands of Glossina morsitans morsitans, an important vector of African trypanosomes. Differential solubilization of salivary proteins was followed by reverse-phase, high-performance liquid chromatography (HPLC) and analysis of fractions by 1-D gel electrophoresis to reveal four major proteins. Each protein was subjected to amino acid microanalysis and N-terminal microsequencing. A protein chemical approach using high-resolution 2-D gel electrophoresis and mass spectrometry was also used to identify the salivary proteins. Matrix-assisted, laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and quadrupole time-of-flight (Q-TOF) tandem mass spectrometry methods were used for peptide mass mapping and sequencing, respectively. Sequence information and peptide mass maps queried against the NCBI non-redundant database confirmed the identity of the first protein as tsetse salivary gland growth factor-1 (TSGF-1). Two proteins with no known function were identified as tsetse salivary gland protein 1 (Tsal 1) and tsetse salivary gland protein 2 (Tsal 2). The fourth protein was identified as Tsetse antigen-5 (TAg-5), which is a member of a large family of anti-haemostatic proteins. The results show that these four proteins are the most abundant soluble gene products present in salivary glands of teneral G. m. morsitans. We discuss the possible functions of these major proteins in cyclical transmission of African trypanosomes.  相似文献   

7.
The development of a multidimensional approach involving high-performance liquid chromatography (LC), ion mobility spectrometry (IMS) and tandem mass spectrometry is described for the analysis of complex peptide mixtures. In this approach, peptides are separated based on differences in their LC retention times and mobilities (as ions drift through He) prior to being introduced into a quadrupole/octopole/time-of-flight mass spectrometer. The initial LC separation and IMS dispersion of ions is used to label ions for subsequent fragmentation studies that are carried out for mixtures of ions. The approach is demonstrated by examining a mixture of peptides generated from tryptic digestion of 18 commercially available proteins. Current limitations of this initial study and potential advantages of the experimental approach are discussed.  相似文献   

8.
Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.  相似文献   

9.
Redox modification by S-glutathionylation is an expanding field within cell signalling research. However, the methods available for analysis of S-glutathionylated proteins in complex mixtures are not sufficiently accurate to specifically and in a high-throughput manner on a structural level establish the effects of S-glutathionylation on the individual proteins. A method has been developed for rapid identification of the S-glutathionylation sites of proteins in diamide-treated ECV304 cells, through tagging of deglutathionylated proteins with a cysteine-reactive biotin-affinity tag, trypsinisation, avidin-affinity purification of tagged peptides, and subsequent analysis by liquid chromatography and quadrupole time-of-flight tandem mass spectrometry. The method has led to identification of the glutathionylation sites of gamma-actin (Cys(217)), heat shock protein 60 (Cys(447)), and elongation factor 1-alpha-1 (Cys(411)). Further developments of accuracy within the field of peptide-affinity capture and mass spectrometry are discussed.  相似文献   

10.
A mass spectrometry method has been developed for selective detection of glycopeptides at the low (< or = 25) picomole level during chromatography of glycoprotein digests and for differentiation of O-linked from N-linked oligosaccharides. The technique involves observation of diagnostic sugar oxonium-ion fragments, particularly the HexNAc+ fragment at m/z 204, from collisionally excited glycopeptides. Collision-induced fragmentation can be accomplished in either of two regions of a triple quadrupole mass spectrometer equipped with an atmospheric pressure, electrospray (ES) ionization source. If collisions before the first quadrupole are chosen, it is possible to enhance formation of carbohydrate-related fragment ions without distorting the distribution of peptide and glycopeptide signals by increasing the collisional excitation potential only during that portion of each scan in which the low mass carbohydrate-related ions are being detected. This procedure, requiring only a single quadrupole instrument, identifies putative glycopeptide-containing fractions in the chromatogram but suffers from a lack of specificity in the case of co-eluting peptides. Increased specificity is obtained by selectively detecting only those parent ions that fragment in Q2, the second collision region of the triple quadrupole, to produce an ion at m/z 204 (HexNAc+). Only (M + H)+ ions of glycopeptides are observed in these liquid chromatography-electrospray tandem mass spectrometry (LC-ESMS/MS) "parent-scan" spectra. N-linked carbohydrates are differentiated from O-linked by LC-ESMS/MS analysis of the digested glycoprotein prior to and after selective removal of N-linked carbohydrates by peptide N:glycosidase F. These methods, which constitute the first liquid chromatography-mass spectrometry (LC-MS)-based strategies for selective identification of glycopeptides in complex mixtures, facilitate location and preparative fractionation of glycopeptides for further structural characterization. In addition, these techniques may be used to assess the compositional heterogeneity at specific attachment sites, and to define the sequence context of the attachment site in proteins of known sequence. The strategy is demonstrated for bovine fetuin, a 42-kDa glycoprotein containing three N-linked, and at least three O-linked carbohydrates. Over 90% of the fetuin protein sequence was also corroborated by these LC-ESMS studies.  相似文献   

11.
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two‐dimensional gel electrophoresis and separation by ion‐exchange and reverse‐phase high‐performance liquid chromatography followed by mass spectrometry using tanden matrix‐assisted laser desorption/ionization with time‐of‐flight (MALDI‐TOF/TOF) mass spectrometry and electrospray ionization‐quadrupole with time‐of‐flight (ESI‐Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10‐ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.  相似文献   

12.
Peptides, proteins, single-stranded oligonucleotides, and double-stranded DNA fragments were separated with high resolution in micropellicular, monolithic capillary columns prepared by in situ radical copolymerization of styrene and divinylbenzene. Miniaturized chromatography both in the reversed-phase and the ion-pair reversed-phase mode could be realized in the same capillary column because of the nonpolar character of the poly-(styrene/divinylbenzene) stationary phase. The high chromatographic performance of the monolithic stationary phase facilitated the generation of peak capacities for the biopolymers in the range of 50-140 within 10 min under gradient elution conditions. Employing volatile mobile phase components, separations in the two chromatographic separation modes were on-line hyphenated to electrospray ionization (tandem) mass spectrometry, which yielded intact accurate molecular masses as well as sequence information derived from collision-induced fragmentation. The inaccuracy of mass determination in a quadrupole ion trap mass spectrometer was in the range of 0.01-0.02% for proteins up to a molecular mass of 20000, and 0.02-0.12% for DNA fragments up to a molecular mass of 310000. High-performance liquid chromatography-electrospray ionization mass spectrometry utilizing monolithic capillary columns was applied to the identification of proteins by peptide mass fingerprinting, tandem mass spectrometric sequencing, or intact molecular mass determination, as well as to the accurate sizing of double-stranded DNA fragments ranging in size from 50 to 500 base pairs, and to the detection of sequence variations in DNA fragments amplified by the polymerase chain reaction.  相似文献   

13.
A proteomic approach was used for the identification of larval hemolymph proteins of Drosophila melanogaster. We report the initial establishment of a two-dimensional gel electrophoresis reference map for hemolymph proteins of third instar larvae of D. melanogaster. We used immobilized pH gradients of pH 4-7 (linear) and a 12-14% linear gradient polyacrylamide gel. The protein spots were silver-stained and analyzed by nanoLC-Q-Tof MS/MS (on-line nanoscale liquid chromatography quadrupole time of flight tandem mass spectrometry) or by Matrix assisted laser desorption time of flight MS (MALDI-TOF MS). Querying the SWISSPROT database with the mass spectrometric data yielded the identity of the proteins in the spots. The presented proteome map lists those protein spots identified to date. This map will be updated continuously and will serve as a reference database for investigators, studying changes at the protein level in different physiological conditions.  相似文献   

14.
Haloferax volcanii, an extreme halophile originally isolated from the Dead Sea, is used worldwide as a model organism for furthering our understanding of archaeal cell physiology. In this study, a combination of approaches was used to identify a total of 1296 proteins, representing 32% of the theoretical proteome of this haloarchaeon. This included separation of (phospho)proteins/peptides by 2-dimensional gel electrophoresis (2-D), immobilized metal affinity chromatography (IMAC), metal oxide affinity chromatography (MOAC), and Multidimensional Protein Identification Technology (MudPIT) including strong cation exchange (SCX) chromatography coupled with reversed phase (RP) HPLC. Proteins were identified by tandem mass spectrometry (MS/MS) using nanoelectrospray ionization hybrid quadrupole time-of-flight (QSTAR XL Hybrid LC/MS/MS System) and quadrupole ion trap (Thermo LCQ Deca). Results indicate that a SCX RP HPLC fractionation coupled with MS/MS provides the best high-throughput workflow for overall protein identification.  相似文献   

15.
Intracellular proteins are in a state of flux, continually being degraded into amino acids and resynthesized into new proteins. The rate of this biochemical recycling process varies across proteins and is emerging as an important consideration in drug discovery and development. Here, we developed a triple-stage quadrupole mass spectrometry assay based on product ion measurements at unit resolution and H(2)(18)O stable tracer incorporation to measure relative protein synthesis rates. As proof of concept, we selected to measure the relative in vivo synthesis rate of ApoB100, an apolipoprotein where elevated levels are associated with an increased risk of coronary heart disease, in plasma-isolated very low density lipoprotein (VLDL) and low density lipoprotein (LDL) in a mouse in vivo model. In addition, serial time points were acquired to measure the relative in vivo synthesis rate of mouse LDL ApoB100 in response to vehicle, microsomal triacylglycerol transfer protein (MTP) inhibitor, and site-1 protease inhibitor, two potential therapeutic targets to reduce plasma ApoB100 levels at 2 and 6 h post-tracer-injection. The combination of H(2)(18)O tracer with the triple quadrupole mass spectrometry platform creates an assay that is relatively quick and inexpensive to transfer across different biological model systems, serving as an ideal rapid screening tool for relative protein synthesis in response to treatment.  相似文献   

16.
17.
Lanostane-triterpene acids obtained from the culture of the fungus Coriolellus malicola were studied by electrospray mass spectrometry in the negative ion mode using quadrupole time-of-flight and quadrupole ion trap analysers. Despite the differences observed in the mass spectra recorded with these instruments, a set of fragment ions was found to be characteristic of the family, depending on the Delta(7,9(11)) or Delta(8) skeleton and the particular functional group at C-3.  相似文献   

18.
Methods for on-chip protein analysis   总被引:7,自引:0,他引:7  
The unambiguous identification of peptides/proteins is crucial for the definition of the proteome. Using ProteinChip Array technology also known as surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS), we developed experimental protocols and probed test conditions required for the protein identification on ProteinChip surfaces. We were able to directly digest peptides/proteins on-chip surfaces by specific proteases, such as trypsin, and to obtain the peptide mass fingerprint of the sample under investigation by its direct analysis on a simple laser desorption/ionization mass spectrometer. Furthermore, tandem mass spectrometry was performed on several of the resulting tryptic peptides by using collision quadrupole time of flight (Qq-TOF) MS/MS via the ProteinChip interface, thus allowing the unambiguous identification of the protein(s) within the sample. In addition, we were able to identify the C-terminal sequence of peptides by their digestion with carboxypeptidase Y directly on ProteinChip surfaces coupled with SELDI-TOF MS analysis of the resulting peptide mass ladders employing the instrument's protein ladder sequence software. Moreover, the removal of up to nine amino acid residues from the C-terminal end of a peptide extends the functional range of Qq-TOF MS/MS sequence determination to over 3000 m/z. The utility of these procedures for the proteome exploration are discussed.  相似文献   

19.
Turkina MV  Villarejo A  Vener AV 《FEBS letters》2004,564(1-2):104-108
The surface-exposed peptides were cleaved by trypsin from the photosynthetic thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. Two phosphorylated peptides, enriched from the peptide mixture and sequenced by nanospray quadrupole time-of-flight mass spectrometry, revealed overlapping sequences corresponding to the N-terminus of a nuclear-encoded chlorophyll a/b-binding protein CP29. In contrast to all known nuclear-encoded thylakoid proteins, the transit peptide in the mature algal CP29 was not removed but processed by methionine excision, N-terminal acetylation and phosphorylation on threonine 6. The importance of this phosphorylation site is proposed as the reason of the unique transit peptide retention.  相似文献   

20.
Deamidation of asparaginyl residues is a common posttranslational modification in proteins and has been studied extensively because of its important biological effects, such as those on enzymatic activity, protein folding, and proteolytic degradation. However, characterization of the sites of deamidation of a protein has been a difficult analytical problem. In this study, mass spectrometry has been used as an analytical tool to characterize the deamidation of barstar, an RNAse inhibitor. Upon incubation of the protein at alkaline pH for 5 h, intact mass analysis of barstar, using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QToF MS), indicated an increase in the mass of +2 Da, suggesting possible deamidation of the protein. The sites of deamidation have been identified using the conventional bottom-up approach using a capillary liquid chromatography connected on line to an ESI QToF mass spectrometer and top down approach by direct infusion of the intact protein and fragmenting inside MS. These chemical modifications are shown to lead to stabilization of an unfolding intermediate, which can be observed in equilibrium unfolding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号