首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endogenous phenolic compounds (PC) affecting Rhizobium leguminosarum bv. viceae propagation were isolated from the roots of etiolated pea (Pisum sativum L.) seedlings before and within one or two day after inoculation. It was established that, during the first day after inoculation, PC-induced stimulation of bacterial growth in roots was replaced by its inhibition, which was somewhat more pronounced at 8°C. The ratio between PC fractions was also changed during the first day after inoculation, especially strongly at low temperature; and this was evidently the cause for Rhizobium growth inhibition in root cells.  相似文献   

2.
The height of Pinus radiata Don seedlings grown on soils incorporating different proportions of root tissues (25 and 50%) was shown to be reduced by 20–80%. Seedlings watered with aqueous extracts from soil/root mixtures also showed a significant reduction in growth. This growth-retarding effect was partially overcome by the addition of nutrients or by soil sterilisation. It is postulated that growth retardation was caused not only by nutrient deficiency resulting from the addition of organic matter with a high C/N ratio, but also by phytotoxic substances present in the root tissue. The effect of water extracts of roots from old P. radiata trees on the growth of young P. radiata seedlings and on a mycorrhizal fungus (Rhizopogon sp.) under aseptic conditions was also studied. Extracts from the inner bark of roots caused complete growth inhibition of the mycorrhizal fungus as well as root necrosis and wilting of P. radiata seedlings. A water-soluble substance or substances, toxic both to the roots of P. radiata and to its mycorrhizal fungus, is postulated as the causal agent.  相似文献   

3.
毛状根的构型是影响其生长速度和生物量积累的重要因素,为了规模化培养金铁锁毛状根,进一步解决金铁锁资源短缺问题,该研究以金铁锁毛状根为材料,通过改变培养基类型、碳源及碳源浓度,观察和分析了毛状根的生长状态,找出影响毛状根构型的因素。结果表明:最适合金铁锁毛状根生长的培养基为B5+蔗糖30 g·L~(-1),金铁锁毛状根主根长而粗壮,一级、二级侧根生长量大,根系表面积较大,生长效果最佳。经液体悬浮培养验证,测定毛状根的生长量,与在固体培养基培养的毛状根生长状态基本一致。通过该项研究,优化了培养基中营养成分的配比,实现了金铁锁毛状根的快速生长和生物量的积累。  相似文献   

4.
5.
Lee , Addison E. (U. Texas, Austin.) The effects of various substances on the comparative growth of excised tomato roots of clones carrying dwarf and normal alleles. Amer. Jour. Bot. 46(1) : 16-21. Illus. 1959.—Excised tomato roots carrying the wd gene for dwarfness and its comparable normal allele, wd+, were cultured under various conditions in an effort to provide information as to the physiological differences between the 2 root clones. Two percent is the optimal sucrose concentration for both roots, although wd roots appear to be relatively more tolerant to high sucrose concentration than wd+ roots. The addition of yeast extract, casein hydrolysate, 1, 3-diphenylurea, and a combination of the last 2 in standard medium fail to improve growth of either wd or wd+ roots. The growth of wd roots is favored by the dark while that of wd+ roots is favored by the light. The addition of IAA to the medium fails to stimulate either type. The effects of eosin added to the medium in various concentrations were studied. High concentrations were inhibitory, but the effect of a concentration of 10-9 g./ml. provided some evidence of an auxin differential between the two clones of roots. The effects of antiauxins were also investigated, but all of those used reduced the growth of both wd and wd+ roots. It was concluded that although there may be some differences in the auxin metabolism between wd and wd+ roots, it is not likely that this is the cause of dwarfism in the wd roots. Kinetin was found to stimulate both wd and wd+ roots in a concentration of 1.0γ/l. but the stimulation was not differential. Gibberellic acid was found to inhibit both wd and wd+ roots in relatively high concentrations. It had little effect on wd roots in relatively low concentrations, but was inhibitory to wd+ roots even in very low concentrations. Thus these substances appear not to be the cause of the dwarf condition of the wd roots.  相似文献   

6.
Summary Aqueous extracts of Western Hemlock roots were tested for the ability to stimulate initiation of growth from carpophore tissue of certain mycorrhizal-associated fungi. Of numerous species tested, onlyRozites caperatus andInocybe napipes responded slightly to this treatment, initiating a feeble mycelial development from gill tissue fragments.To determine whether exogenous NAD or young, excised roots would stimulate the growth of certain mycorrhizal fungi, species ofAmanita, Tricholoma, andXerocomus were subcultured in a rich basal medium, with and without added NAD or excised tomato roots. Spore germination tests on mycorrhizal-associated species not previously subcultured were conducted in a similar fashion.Added NAD stimulated the growth ofLeucopaxillus amarus but inhibited development ofArmillaria zelleri. It was without pronounced effect on the other cultures. In the presence of excised tomato roots, growth of theLeucopaxillus species was also stimulated, butArmillaria zelleri was inhibited slightly andXerocomus chrysenteron almost completely. Both treatments were without essential effect on the other species tested.No positive results were obtained with either added NAD or excised tomato roots in the spore germination studies.  相似文献   

7.
Suaeda salsa L. is a halophytic species that is well adapted to high salinity. In order to understand its salt tolerance mechanism, we examined the growth and vacuolar H+-ATPase (V-ATPase) response to NaCl within the shoots and roots. The growth of shoots, but not roots, was dramatically stimulated by NaCl. Cl and Na+ were mainly accumulated in shoots. V-ATPase activity was significantly increased by NaCl in roots and especially in shoots. Interestingly, antisera ATP95 and ATP88b detected three V1 subunits (66, 55 and 36 KDa) of V-ATPase only in shoots, while an 18 kDa V0 subunit of V-ATPase was detected by both antisera in shoots and roots. It suggested that the tissue-specific characteristics of V-ATPase were related to the different patterns of growth and ion accumulation in shoots and roots of S. salsa.  相似文献   

8.
S. Pandey  A. P. Misra 《Mycopathologia》1971,45(3-4):337-354
The morphology and the mycotrophic habit of a new species ofRhizophagus in mycorrhizal association with the roots ofLitchi chinensis Sonn a tropical fruit tree, has been described. It belongs to the vesicular-arbuscular group of phycomycetous endophytes and has been namedRhizophagus litchii sp. nov.The endophyte could not be brought into culture in artificial media, the presence of living litchi roots was necessary for its growth and development.Root penetration of the endophyte was through the epidermal cells. Roots hairs were free from infection.Part of the thesis submitted byS. Pandey for the award of the degree of Doctor of Philosophy from Bhagalpur University, Bhagalpur, Bihar (India).  相似文献   

9.
Summary Stomatal conductance of unstrossed, soil drought, and previously drought (predrought) Gmelina arborea seedlings increased in the morning and decreased before or immediately after midday. In the unstressed and predrought seedlings, leaf water potential decreased with increases in transpiration. In soil drought seedlings, there was some evidence of decreased hydraulic conductivity from soil to the plant, as indicated by the shape in the slope of the water potential/transpiration relationship. Root growth of drought plants was greater than in their unstressed counterparts at the lowest soil segment of a pot. The partial recovery of predrought seedlings was attributed to this subtantial root growth in the lowest soil segment.In the second experiment, Gmelina arborea seedlings were partially waterlogged, by flooding the polyethylene bag to half its length, for a period of 23 days. Waterlogging induced stomatal closure and reduction in leaf water potential but there was some evidence of tolerance to waterlogging towards the end of treatment. Root growth, shoot and root dry weights were slightly reduced below those of controls. After 9 days of waterlogging, adventitious roots began to form which correlated with depletion of soluble sugars in the shoot but with an increase in the roots.It is suggested that the tolerance of Gmelina plants to either soil drought or waterlogging may partly be due to partitioning of the soluble sugars from shoot to roots for production of roots and formation of adventitious roots respectively which are likely to enhance the flow of water from the soils to the plant. Therefore the plant response is very similar under conditions of increased deficits and surplus of soil water.  相似文献   

10.
Arabidopsis thaliana, axr4 , was restored by the addition of 30–300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole-3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axr1 mutants is different from that of axr4. Received 9 June 1999/ Accepted in revised form 16 August 1999  相似文献   

11.
12.
P. E. Pilet 《Planta》1986,169(4):600-602
A large population of primary roots of Zea mays (cv. LG 11) was selected for uniform length at zero time. Their individual growth rates were measured over an 8-h period in the vertical position (in humid air, darkness). Three groups of these roots with significantly different growth rates were then chosen and their cap length was measured. It was found that slowly growing roots had long caps whereas rapidly growing roots had short caps. The production by the cap cells of basipetally transported growth inhibitors was tested (biologically by the curvature of half-decapped roots) and found to be significantly higher for longer root caps than that for shorter ones.  相似文献   

13.
Cuttings obtained from seedlings of Pisum sativum L. were rooted in water solution. Shoot growth continued after excision and shoot length increased considerably before roots emerged. Increase in dry weight was strongly dependent on light supply. Continued growth was dependent on supply of mineral nutrients to the rooting solution. Mineral nutrients had no or slight influence on the number of roots formed on cuttings from stock plants grown in fertilized soil, but the growth in length of the roots was dependent on the presence of calcium in the solution. Root formation was dependent on photosynthetic products formed after excision. No roots were formed on cuttings kept in the dark. The number of roots increased with increasing irradiance given to the leafy part of the cutting. At a low level of irradiance sucrose supply through the rooting medium increased the number of roots. Light given to the basal part of the cuttings had a strongly inhibitory effect on the number of roots formed. It is concluded that the carbohydrate level easily becomes a limiting factor for root formation in growing pea cuttings. Availability of mineral nutrients influences in the first place the growth of the shoots.  相似文献   

14.
雷公藤组培产物的杀虫杀菌活性研究   总被引:2,自引:0,他引:2  
采用室内生测法研究了雷公藤愈伤组织、悬浮细胞、不定根等组培产物对小菜蛾毒杀、生长发育影响以及不定根提取物对番茄灰霉病等植物病原真菌菌丝生长抑制作用,以明确雷公藤组培产物的生物活性及其应用前景。结果表明,不同雷公藤组培产物对小菜蛾3龄幼虫都具有明显的毒杀作用,悬浮细胞以及不定根的LC50均超过了根皮粉的效果,其中的不定根提取物对小菜蛾3龄幼虫毒杀作用的LC50为根皮粉的1.95倍;不同组培产物提取物对小菜蛾幼虫的生长均有明显的抑制作用,其中不定根提取物处理后每天的小菜蛾体重显著下降,72h后70%左右已经死亡,存活的试虫体重比试验前下降了18.33%;雷公藤不定根提取物对供试的11种植物病原真菌菌丝生长均有一定的抑制作用,有5种的抑制率超过60%,并对番茄灰霉病菌的抑制作用最强,其EC50为10.074mg/mL,且不定根的抑制效果均超过了根皮粉的抑制效果。  相似文献   

15.
The role of harmful soil organisms in the degeneration ofAmmophila arenaria at coastal foredunes was examined by the growing of seedlings ofA. arenaria in soil samples collected from its root zone. Three sites, each representing a successive stage in foredune succession were examined: (1) a highly mobile dune (sand accretion of 80 cm year−1) with vigorousA. arenaria, colonizing only the upper 30-cm of the annually deposited layer of sand, (2) a mobile dune with vigorousA. arenaria (sand accretion of 22 cm year−1) and a 1-metre soil profile completely colonized by roots and (3) a stable dune (no sand accretion) with degeneratedA. arenaria and young roots mainly present in the upper 0–10 cm. In the upper part of the highly mobile site, the presence of harmful soil organisms was confined to the root layers and at the mobile site for all depth layers a significant growth reduction ofA. arenaria was observed due to the activity of harmful soil organisms. At the stable site, however, growth had only been reduced in some of the depth layers. At all sites newly formed roots ofA. arenaria had been colonized by harmful soil organisms within one year. If present in sand prior to root growth harmful soil organisms reduced root length and root hair formation severely and they enhanced branching of the roots. It is concluded that harmful soil organisms initiate degeneration ofA. arenaria in stable dunes by attack of the root system, which makes the plants suffer from abiotic stress.  相似文献   

16.
Trichoderma hamatum, T. harzianum andT. koningii were isolated from wheat and rye-grass roots from a field in Western Australia. Frequency of occurrence ofTrichoderma spp. was higher on roots subjected to washing only, for both wheat and rye-grass than the roots which were surface-sterilized with 0.6% or 1.25% NaOCl.Trichoderma spp. were recovered at a higher frequency on PDA amended with lactic acid (pH 4.5) than on PDA alone (pH 5.6) or PDA with streptomycin. In general,Trichoderma spp. were isolated at a higher frequency from roots of wheat than that of rye-grass.T. hamatum occurred at a higher frequency in rye-grass roots than in wheat, whereasT. harzianum was more common in roots of wheat than in rye-grass, especially in seedling and milky ripe stages.T. koningii was recovered at a higher frequency from roots at seedling stage of rye-grass than wheat, the reverse being true at tillering stage.T. koningii was not recovered from roots of either host in any sampling when they were surface sterilized with 1.25% NaOCl.The take-all fungus was isolated from wheat and rye-grass roots more frequently at tillering and stem extension stages than others. It was severely pathogenic to both hosts in sterilized and non-sterilized soil.Addition of lactic acid, HCl or streptomycin to PDA did not affect the growth of theTrichoderma spp. tested, but the growth was slower on Martin's medium than on other media. In generalT. harzianum andT. koningii grow faster thanT. hamatum. The growth of the three species were not different at 20 and 25°C, but at 15°c growing of all species was significantly reduced.Incorporation of lactic acid into PDA prevented the bacterial growth in all treatments. Streptomycin too reduced but to a lesser degree than lactic acid. Surface sterilization with NaOCl decreased the recovery of both bacteria and fungi. T. hamatum andT. koningii reduced the mortality of wheat and rye-grass plants inoculated with the take-all fungus in sterilized and non-sterilized soil, whereT. harzianum did not protect wheat or rye-grass from infection by the take-all fungus.  相似文献   

17.
The growth of the shoot and roots of seedling plants of cocoa (Theobroma cacao L.) under constant glasshouse conditions showed a rhythmic cycle, with the maximum growth stages of each alternating in a regular sequence. When the growth cycle of the shoot was upset by removing all new leaves immediately after unfolding, the roots showed a high constant growth rate during this period, suggesting that normally the rapidly expanding leaves exert an inhibitory influence on the roots. Conversely removal of portions of the root delayed the production of new leaves in the shoot. The level of soluble and starch carbohydrate in the mature leaves, roots and stem declined during the period of expansion of the flush leaves, but accumulated again at the end of the leaf expansion stage. It is likely that this reserve carbohydrate was remobilised and translocated to the flush leaves during their period of expansion. A large proportion of newly formed photoassimilate, as shown by the distribution of 14C radioactivity from different source leaves, was also translocated to the young leaves during expansion. The large sink created by these leaves may cause photoassimilate and reserve carbohydrate to be diverted from the roots, thereby inhibiting root growth during the stage of leaf expansion. It is suggested that the rhythmic leaf production at the apex may control the growth cycle of the roots.  相似文献   

18.
Summary Root proliferation in nutrient-rich soil patches is an important mechanism facilitating nutrient capture by plants. Although the phenomenon of root proliferation is well documented, the specific timing of this proliferation has not been investigated. We studied the timing and degree of root proliferation for three perennial species common to the Great Basin region of North America: a shrub, Artemisia tridentata, a native tussock grass, Agropyron spicatum, and an introduced tussock grass, Agropyron desertorum. One day after we applied nutrient solution to small soil patches, the mean relative growth rate of Agropyron desertorum roots in these soil patches was two to four times greater than for roots of the same plants in soil patches reated with distilled water. Most of the increased root growth came from thin, laterally branching roots within the patches. This rapid and striking root proliferation by Agropyron desertorum occurred in response to N-P-K enrichment as well as to P or N enrichment alone. A less competitive bunchgrass, Agrophyron spicatum, showed no tendency to proliferate roots in enriched soil patches during these two-week experiments. The shrub Artemisia tridentata proliferated roots within one day of initial solution injection in the N-enrichment experiment, but root proliferation of this species was more gradual and less consistent in the N-P-K and P-enrichment experiments, respectively. The ability of Agropyron desertorum to proliferate roots rapidly may partly explain both its general competitive success and its superior ability to exploit soil nutrients compared to Agropyron spicatum in Great Basin rangelands of North America.  相似文献   

19.
黄柳不同级序根的解剖结构及其细根的研究   总被引:1,自引:0,他引:1  
采用石蜡切片法和徒手切片法对3年生黄柳不同级序的根进行解剖结构研究,并结合直径和根序对其细根进行定义,为沙生植物细根及其碳分配等相关研究提供依据。结果表明:(1)黄柳1、2级根为初生根,4、5级根为次生根,3级根为过渡型根。(2)黄柳根的初生木质部为三原型或四原型。(3)黄柳不同级序根的形态与解剖结构存在显著差异,随着根序的增加,根直径与维管柱直径逐渐增大;低级根直径主要影响因素为维管柱直径、皮层薄壁细胞直径和皮层层数;高级根直径主要影响因素为维管柱直径。(4)定义黄柳的细根为前3级根中未形成连续木栓层且直径小于0.7mm的根。该研究明确了黄柳不同级序根的解剖结构特征,并界定了黄柳细根的范围,其研究方法对于精确估计细根在生态系统中的作用具有重要的意义。  相似文献   

20.
The roots of Ezo-no-gishigishi (Rumex obtusifolius) contained a high concentration of malonic acid (more than 100 mg/100 g fr.wt) and oxalic acid (15-45 mg/100g fr.wt). The effect of several compounds isolated from the roots of R. obtusifolius on the growth of some fungi, bacteria and lettuce seedlings was examined. It is suggested that one reason for the resistance to decomposition of roots of R. obtusifolius in soil is the existence of organic acids and derivatives of naphthalene and anthraquinone in the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号