首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
We hypothesized that pretreatment of an infarcted heart by mechanical transmyocardial revascularization (TMR) before transplantation of bone marrow cells (BMCs) or BMC-expressing angiogenic growth factors would increase transplanted BMC survival and enhance myocardial repair. Female Lewis rats underwent coronary ligation 3 wk before creation of 10 needle TMR channels (3 groups) or no TMR (3 groups), followed by transplantation of 3 x 10(6) male donor BMCs, BMC transfected with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1) (BMC + VBI), or medium alone. At 1, 3, and 7 days, we evaluated transplanted cell survival, vascular densities, and left ventricular (LV) function (N = 4 per group x 6 groups x 3 time points). At 3 days, vascular densities in the scar were increased by TMR + BMC + VBI and by BMC + VBI (P < 0.05), and at 7 days, vascular densities were greatest in rats receiving TMR + BMC + VBI (P < 0.05). Transplanted cell survival at 3 and 7 days was increased by TMR and by BMC + VBI. Combined therapy with TMR + BMC + VBI resulted in the greatest cell survival at 3 days (P < 0.05) versus BMC. After 7 days, LV ejection fraction (LVEF) was lowest in rats receiving neither BMC nor TMR and greatest in rats receiving TMR + BMC + VBI (P = 0.004). We concluded that mechanical pretreatment of infarcted myocardium by TMR enhances the effect of subsequent cell-based gene therapy on transplanted cell survival, angiogenesis, and LV function. Scar pretreatment with TMR combined with cell-based multigene therapy may maximize myocardial repair.  相似文献   

3.
Accuracy of body composition measurements by dual-energy X-ray absorptiometry (DXA) was compared with direct chemical analysis in 10 adult rhesus monkeys. DXA was highly correlated (r-values > 0.95) with direct analyses of body fat mass (FM), lean mass (LM) and lumbar spine bone mineral content (BMC). DXA measurements of total body BMC were not as strongly correlated (r-value = 0.58) with total carcass ash content. DXA measurements of body FM, LM and lumbar spine BMC were not different from data obtained by direct analyses (P-values > 0.30). In contrast, DXA determinations of total BMC (TBMC) averaged 15%, less than total carcass ash measurements (P = 0.002). In conclusion, this study confirms the accurate measurement of fat and lean tissue mass by DXA in rhesus monkeys. DXA also accurately measured lumbar spine BMC but underestimated total body BMC as compared with carcass ash determinations.  相似文献   

4.
Objective: To assess bone mineral content (BMC) among obese adolescents who lose weight during a critical period for bone accretion. Methods and Procedures: Whole body, lumbar spine, lower, and upper limb BMC were measured in 62 obese adolescents who completed an intensive 12‐month weight loss trial. BMC was adjusted for height (z ‐scores) using data from a reference group of 66 adolescents (who were 18% overweight). Results: At baseline, the BMC of the obese group was higher than the reference group. During the 12‐month weight loss program, unadjusted BMC increased among the obese adolescents, despite successful weight loss. After adjustment for height, whole body BMC did not change significantly from baseline to 12 months (mean ± s.d.: 1.08 ± 0.67 to 1.06 ± 0.67, P = 0.7). Region‐specific BMC‐for‐height however decreased for the lower (1.07 ± 0.57 to 0.95 ± 0.59, P < 0.001) and upper (1.29 ± 0.56 to 1.18 ± 0.57, P = 0.01) limbs, but lumbar spine BMC‐for‐height increased (0.14 ± 1.06 to 0.40 ± 0.94, P < 0.001). These changes were largely and independently explained by changes in lean and fat mass. Discussion: This study confirms that obese adolescents have high BMC for height and suggests that, unlike adults, their BMC continues to increase during weight loss and remains higher than the BMC of a reference group. After adjustment for growth‐related changes, lower and upper limb BMC appears to decrease, while lumbar spine BMC appears to increase. These results suggest that to optimize the health benefits of weight loss among obese adolescents, their bone health should be better understood and addressed.  相似文献   

5.
Differences in the mineral fraction of the fat-free mass (M(FFM)) and in the density of the FFM (D(FFM)) are often inferred from measures of bone mineral content (BMC) or bone mineral density (BMD). We studied the relation of BMC and BMD to the M(FFM) and D(FFM) in a heterogeneous sample of 216 young men (n = 115) and women (n = 101), which included whites (n = 155) and blacks (n = 61) and collegiate athletes ( n = 132) and nonathletes (n = 84). Whole body BMC and BMD were determined by dual-energy X-ray absorptiometry (DXA; Hologic QDR-1000W, enhanced whole body analysis software, version 5.71). FFM was estimated using a four-component model from measures of body density by hydrostatic weighing, body water by deuterium dilution, and bone mineral by DXA. There was no significant relation of BMD to M(FFM) (r = 0.01) or D(FFM) (r = -0.06) or of BMC to M(FFM) (r = -0.11) and a significant, weak negative relation of BMC to D(FFM) (r = -0.14, P = 0.04) in all subjects. Significant low to moderate relationships of BMD or BMC to M(FFM) or D(FFM) were found within some gender-race-athletic status subgroups or when the effects of gender, race, and athletic status were held constant using multiple regression, but BMD and BMC explained only 10-17% of the variance in M(FFM) and 0-2% of the variance in D(FFM) in addition to that explained by the demographic variables. We conclude that there is not a significant positive relation of BMD and BMC to M(FFM) or D(FFM) in young adults and that BMC and BMD should not be used to infer differences in M(FFM) or D(FFM).  相似文献   

6.
Bone marrow cells (BMC) obtained from normal and cyclophosphamide (CY)-treated mice were cultured in the presence of recombinant human granulocyte-colony stimulating factor (rhG-CSF) and their effector cell activities inhibiting growth of C. albicans were examined. When BMC from CY-treated mice were preincubated with 0.05 ng/ml of rhG-CSF, effector cells with enhanced anti-C. albicans activity were recovered in the adherent cell population, whereas anti-C. albicans activity of BMC from normal mice was found in the non-adherent cell population. During culture without the presence of rhG-CSF, nonadherent BMC, seemingly granulocytes, from normal mice showed apoptotic change, but addition of rhGCSF clearly inhibited this change. On the other hand, when BMC from CY-treated mice were cultured with rhG-CSF, adherent cells as the main effector had the appearance of monocytes. These differences between the effectors with anti-C. albicans activity obtained from normal and CY-treated mice are discussed.  相似文献   

7.
It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.  相似文献   

8.
Natural killer (NK) cells were eliminated with rabbit anti-Asialo GM1 (anti-ASGM1) serum to test the kinetics and location of bone marrow cell (BMC) rejection. Anti-ASGM1 serum was injected intravenously in mice at various times before or after irradiation (8.6 Gy) and transfer of parental-strain or allogeneic BMC. Growth of BMC was determined by measuring splenic 5-iodo-2'-deoxyuridine-125I incorporation 5 days after cell transfer. Anti-ASGM1 serum weakened hybrid resistance even if injected intravenously as late as 24 h post-BMC transfer and even in recipients injected with polyinosinic:polycytidylic acid so as to boost NK activity. If regenerating spleen cells (higher rate of cell cycling) were used as donor cells instead of BMC, the length of time required for rejection was unaffected. Anti-ASGM1 serum injected intravenously rapidly inhibited splenic NK activity and lung clearance of YAC-1 tumor cells, but when injected intratracheally, it only inhibited lung NK activity. Thus, BMC rejection occurs in the hematopoietic tissue and requires at least 24 h.  相似文献   

9.
Abstract: The binding of [3H]bicuculline methochloride (BMC) to mammalian brain membranes was characterized and compared with that of [3H]γ-aminobutyric acid ([3H]GABA). The radiolabeled GABA receptor antagonist showed significant displaceable binding in Tris-citrate buffer that was improved by high concentrations of chloride, iodide, or thiocyanate, reaching >50% displacement in the presence of 0.1 M SCN?. An apparent single class of binding sites for [3H]BMC (KD= 30 nM) was observed in 0.1 M SCN? for fresh or frozen rat cortex or several regions of frozen and thawed bovine brain. The Bmax was about 2 pmol bound/mg of crude mitochondrial plus microsomal membranes from unfrozen washed and osmotically shocked rat cortex, similar to that for [3H]GABA. Frozen membranes, however, showed decreased levels of [3H]BMC binding with no decrease or an actual increase in [3H]GABA binding sites. [3H]BMC binding was inhibited by GABA receptor specific ligands, but showed a higher affinity for antagonists and lower affinity for agonists than did [3H]GABA binding. Kinetics experiments with [3H]GABA binding revealed that low- and high-affinity sites showed a similar pharmacological specificity for a series of GABA receptor ligands, but that whereas all agonists had a higher affinity for slowly dissociating high-affinity [3H]GABA sites, bicuculline had a higher affinity for rapidly dissociating low-affinity [3H]GABA sites. This reverse potency between agonists and antagonists during assay of radioactive antagonists or agonists supports the existence of agonist- and antagonist-preferring conformational states or subpopulations of GABA receptors. The differential affinities, as well as opposite effects on agonist and antagonist binding by anions, membrane freezing, and other treatments, suggest that [3H]BMC may relatively selectively label low-affinity GABA receptor agonist sites. This study, using a new commercially available preparation of [3H]bicuculline methochloride, confirms the report of bicuculline methiodide binding by Mohler and Okada (1978), and suggests that this radioactive GABA antagonist will be a valuable probe in analyzing various aspects of GABA receptors.  相似文献   

10.
Abstract. Subepithelial tissues have an important role in the structure and function of the intestinal epithelium. Basement membrane components (BMC) stimulate epithelial cell migration and differentiation in vitro. The aim of this study was to determine the effect of BMC and/or interstitial tissue collagen (type I) on the in vivo intestinal regenerative response to intestinal patching. Twenty rabbits had two 2 times 5 cm ileal defects patched with the serosal surface of adjacent caecum. Group 1 (n = 5) were controls; group 2 (n = 5), group 3 (n = 5) and group 4 (n = 5) had collagen, collagen plus BMC, and BMC respectively applied to the distal patched defect. Animals were killed at 7 d and evaluated grossly for epithelialization and contraction of the defects. Epithelial coverage was greatest in the distal patch of group 4 animals (62 + 9%) and was significantly greater than the group 4 proximal patch and control values (43 ± 7 and 40 ± 14%, P < 0–05). Contraction was similar in all groups (38 ± 5 to 45 ± 5%). Crypt cell production rate, villus height, and disaccharidase activities were similar in all groups. BMC stimulated epithelialization via a local mechanism since only the distal patch was affected. Type I collagen did not stimulate epithelialization and inhibited the effect of BMC. Since crypt cell production rate was similar in all groups, the enhanced epithelialization seen with BMC is primarily due to increased cell migration.  相似文献   

11.
Hyperacute rejection does not occur when vascularized organs are transplanted between rat and mouse, and this species combination is considered to be concordant. Since hyperacute rejection is believed to reflect the presence of pre-existing antibodies (usually of the IgM class), and lymphocytotoxic antibodies against rat cells have not been detected in normal mouse sera, it has previously been concluded that mouse anti-rat natural antibody (NAb) does not exist. However, studies have not been reported in which rat bone marrow cells (BMC) were used as targets for evaluation of normal mouse sera. Because previous work from our and other laboratories has shown that bone marrow chimerism in the rat into mouse species combination can be achieved only by transplanting large numbers of rat BMC, we have evaluated normal mouse sera for the presence of NAb against rat BMC that might explain these in vivo results. Fisher 344 rat BMC and spleen cells were incubated with serum from nonimmunized mice, then stained with fluoresceinated rat anti-mouse subclass-specific secondary reagents and analyzed using flow cytometry. NAb of the IgM and IgG3 classes were found that bound strongly to rat BMC but showed weak or absent binding to spleen cells. A low level of IgG2b binding was observed to both BMC and spleen cells. Cytotoxic activity was detected against rat BMC but not against spleen cells. The environment in which the animals were maintained played a significant role in determining the level of cytotoxic NAb in normal mouse sera. Our results are consistent with the possibility that bone marrow-specific NAb play a role in resisting engraftment of BMC across this species barrier.  相似文献   

12.
《Bone and mineral》1994,24(3):189-200
The present study was performed to measure appendicular bone mass of Japanese infants and children, and to assess the influence of age, sex and body size on bone mass during the period of bone growth. The bone mineral content (BMC) and bone width (BW) at the distal third of the radius were measured by single photon absorptiometry (SPA) in 229 healthy Japanese infants and children aged 0–12 years, and the BMC/BW ratio was calculated to give the bone mineral density (BMD). BMC and BW increased with age until 2 years, while BMD did not obviously change until 2 years. After 2 years of age, the overall effect of aging appeared more prominent in BMC and BMD than in BW. There were no significant differences in BMC, BW and BMD between males and females aged 0–12 years. Age, body height, and body weight were strongly correlated with three parameters of bone mass (BMC, BW, and BMD). Among the three parameters of bone mass, BMC showed the highest Pearson coefficient of correlation with age (r = 0.955), body height (r = 0.957) and body weight (r = 0.966), as compared with BW and BMD. The present cross-sectional study provides normative data of the appendicular bone mass in healthy Japanese children, which may serve as a standard for assessment of bone mineralization in Japanese infants and children with medical problems.  相似文献   

13.
Specific tolerance can be induced in animals by transplanting hemopoietic cells across concordant species barriers. Despite the fact that the rat-mouse species combination is considered concordant, we have recently demonstrated that normal murine serum contains natural antibodies (nAb), predominantly of the IgM and IgG3 subclasses, with markedly greater binding to rat bone marrow cells (BMC) than to rat splenocytes or thymocytes. Since much greater numbers of rat BMC than of allogeneic murine BMC are required to achieve engraftment in mice, we considered the possibility that these nAbs might be responsible, and that the increased numbers of BMC might be required to absorb these nAb. To evaluate the effect of these nAb on engraftment of rat BMC in mice, we have now performed adoptive transfer studies using T and B cell-deficient severe combined immunodeficiency disease (SCID) mice as recipients. Administration of as few as 5 x 10(5) T cell-depleted rat BMC led to induction of stable xenochimerism in SCID mice conditioned with 4-Gy whole body irradiation. Rat T cells developed after a delay of several weeks, and conferred the ability to reject non-donor-type rat skin grafts, whereas donor-type grafts were accepted. Adoptive transfer of 4 ml of normal BALB/c serum led to a marked reduction in the level of rat chimerism in SCID recipients of 2 x 10(6) F344 BMC. The ability of sera to inhibit engraftment of rat BMC correlated with their cytotoxic nAb content, and the inhibitory effect of highly cytotoxic sera could be overcome by administration of large numbers of rat BMC. Thus, normal mouse serum has a limited ability to hinder engraftment of rat BMC, and this degree of resistance can be overcome by adsorption when large numbers of BMC are administered. Eliminating nAb from serum may be more difficult in discordant species combinations in recipients with functional B cells, but may likewise permit the use of BMT as a means of inducing transplantation tolerance.  相似文献   

14.
Background aims. Acute liver failure (ALF), although rare, remains a rapidly progressive and frequently fatal condition. Acetaminophen (APAP) poisoning induces a massive hepatic necrosis and often leads to death as a result of cerebral edema. Cell-based therapies are currently being investigated for liver injuries. We evaluated the therapeutic potential of transplantation of bone marrow mononuclear cells (BMC) in a mouse model of acute liver injury. Methods. ALF was induced in C57Bl/6 mice submitted to an alcoholic diet followed by fasting and injection of APAP. Mice were transplanted with 10(7) BMC obtained from enhanced green fluorescent protein (GFP) transgenic mice. Results. BMC transplantation caused a significant reduction in APAP-induced mortality. However, no significant differences in serum aminotransferase concentrations, extension of liver necrosis, number of inflammatory cells and levels of cytokines in the liver were found when BMC- and saline-injected groups were compared. Moreover, recruitment of transplanted cells to the liver was very low and no donor-derived hepatocytes were observed. Mice submitted to BMC therapy had some protection against disruption of the blood-brain barrier, despite their hyperammonemia, and serum metalloproteinase (MMP)-9 activity similar to the saline-injected group. Tumor necrosis factor (TNF)-α concentrations were decreased in the serum of BMC-treated mice. This reduction was associated with an early increase in interleukin (IL)-10 mRNA expression in the spleen and bone marrow after BMC treatment. Conclusions. BMC transplantation protects mice submitted to high doses of APAP and is a potential candidate for ALF treatment, probably via an immunomodulatory effect on TNF-α production.  相似文献   

15.
Whether post-natal long chain polyunsaturated fatty acids (LCPUFA) elevates bone mineral content (BMC) of small and normal neonates was studied using pregnant rats and guinea pigs fed a control (C) diet or low protein (LP) diet to induce small neonates followed by C or LCPUFA diets during lactation. Measurements (days 3 and 21 post-partum) included BMC and density (BMD) plus bone metabolism. In rats LP reduced birth weight but at day 21 elevated weight and whole body BMC; LCPUFA enhanced spine BMC, tibia BMC and BMD and whole body BMD. In guinea pig pups, at days 3 and 21, LP reduced weight, whole body and regional BMC and BMD whereas LCPUFA reduced day 3 osteocalcin and elevated day 21 spine BMD. LCPUFA minimized loss of whole body BMC in dams and elevated osteocalcin in sows. LCPUFA during lactation enhances bone in normal and small neonates without compromising maternal bone.  相似文献   

16.
Objective: Understanding factors influencing bone mineral accrual is critical to optimize peak bone mass during childhood. The epidemic of pediatric obesity and reported higher incident of fracture risk in obese children led us to study the influence of fat mass on bone mineral content (BMC) in children. Research Methods and Procedures: Height; weight; pubertal stage; and BMC, non‐bone fat‐free mass (nbFFM), and fat mass (FM) by DXA were obtained in a multiethnic group of healthy children (444 girls/482 boys; 6 to 18 years old) recruited in the New York metropolitan area. Regression techniques were used to explore the relationship between BMC and FM, with age, height, nbFFM, pubertal stage, sex, and ethnicity as covariates. Results: Because there were significant sex interactions, separate regression analyses were performed for girls and boys. Although ln(nbFFM) was the greatest predictor of ln(BMC), ln(FM) was also a significant predictor in prepubertal boys and all girls but not in pubertal boys. This effect was independent of ethnicity. Discussion: FM was a determinant of BMC in all girls but in only prepubertal boys. Our study confirms nbFFM as the greatest predictor of BMC but is the first to find a sex difference in the effect of puberty on the relationship of FM to BMC. Our results suggest that, in two individuals of the same sex and weight, the one with greater fat mass will have lower BMC, especially pubertal boys. The implications of these findings for achievement of optimal peak bone mass in a pediatric population with an unprecedented incidence of overweight and “overfat” status remain to be seen.  相似文献   

17.
Bone and muscle development are both strongly influenced by sex hormones. The purpose of this study was to examine the changes in bone and muscle parameters (bone mineral content - BMC, muscle cross-sectional area - MA) in 130 men aged 31 -60 years, and in 180 pre-menopausal women aged 30-53 years with respect to age, body height and, with the women, their gynecological history (age-at-menarche, number of pregnancies, duration of lactation and use of oral contraception). The study was performed using peripheral quantitative computed tomography (pQCT) at a 65% site of the forearm length. Both BMC and MA were dependent on body height (p<0.0001), but not on age. The BMC/MA ratio was dependent neither on age nor on body height in both genders. MA as well as BMC were found significantly higher in males than in females (p<0.0001 for both variables). We observed a significantly higher BMC/MA ratio in females than in males (p<0.0001). We found no effect either of the analyzed variables of gynecological history on bone/muscle characteristics. The findings highlight the necessity of involving height-adjusted parameters and BMC/MA ratio into bone analysis in adults.  相似文献   

18.
Posttransplant infusion of donor bone marrow cells (BMC) induces tolerance to allografts in adult mice, dogs, nonhuman primates, and probably humans. Here we used a mouse skin allograft model and an allogeneic radiation chimera model to examine the role of MHC Ags in tolerance induction. Infusion of MHC class II Ag-deficient (CIID) BMC failed to prolong C57BL/6 (B6) skin grafts in ALS- and rapamycin-treated B10.A mice, whereas wild-type B6 or MHC class I Ag-deficient BMC induced prolongation. Removal of class II Ag-bearing cells from donor BMC markedly reduced the tolerogenic effect compared with untreated BMC, although graft survival was significantly longer in mice given depleted BMC than that in control mice given no BMC. Infusion of CIID BMC into irradiated syngeneic B6 or allogeneic B10.A mice produced normal lymphoid cell reconstitution including CD4+ T cells except for the absence of class II Ag-positive cells. However, irradiated B10.A mice reconstituted with CIID BMC rejected all B6 and a majority of CIID skin grafts despite continued maintenance of high degree chimerism. B10.A mice reconstituted with B6 BMC maintained chimerism and accepted both B6 and CIID skin grafts. Thus, expression of MHC class II Ag on BMC is essential for allograft tolerance induction and peripheral chimerism with cells deficient in class II Ag does not guarantee allograft acceptance.  相似文献   

19.
The aim of the study was to investigate the relationships between specific anthropometric (9 skinfolds, 13 girths, 8 lengths and 8 breadths), body composition (body fat %, fat free mass [FFM], fat mass [FM]) parameters and bone mineral parameters (bone mineral density [BMD], bone mineral content [BMC) in young rhythmic gymnasts and same age controls. Eighty nine 7-8-year-old girls participated in this study and were divided to the rhythmic gymnast's (n = 46) and control (n = 43) groups. Body composition was determined by dual energy X-ray absorptiometry (FFM, FM, body fat %, BMD and BMC). Body fat % and FM were lower and BMD and BMC values at lumbar spine (L2-L4) and femoral neck were higher in rhythmic gymnasts compared with controls. All measured skinfold thicknesses were thicker in controls. In girths, lengths and widths there were only few significant differences between the groups. Stepwise multiple regression analysis indicated that skinfold thicknesses (supraspinale and medial calf) influenced L2-L4 BMD only in controls 38.2% (R2x100). Supraspinale and iliac crest skinfold thicknesses characterised L2-L4 BMC 43.9% (R2x100). Calf girths influenced BMD in L2-L4 52.3% (R2x100) in controls. BMC in L2-L4 was dependent only on mid-thigh girths 35.9% (R2x100). BMD in L2-L4 was dependent on tibiale-laterale height 30.0% (R2x100). Biiliocristal breadths together with sitting height characterised BMC in L2-L4 BMD 62.3% (R2x100). In conclusion, we found that the relationships between anthropometry, body composition and bone parameters in young rhythmic gymnasts are weak. In control group first of all lower body anthropometric parameters significantly correlated with BMD and BMC in spine.  相似文献   

20.
Recent clinical studies have demonstrated that intracoronary infusion of autologous bone marrow cells (BMC) in conjunction with standard treatment may improve left ventricular function after an acute myocardial infarction (AMI). However, the results of these studies remain controversial, as the studies were relatively small in size and partially differed in design. We reviewed primary controlled randomized clinical studies comparing intracoronary transfer of autologous non-mobilized BMC combined with standard therapy versus standard therapy alone in patients with AMI. We identified five randomized controlled clinical trials, three of which were also placebo- and bone marrow aspiration-controlled. Non-mobilized BMC were infused into the revascularized coronary target artery 6.6 +/- 6.1 days after AMI. The mean follow- up period of 5.2 +/- 1.1 months was completed by 482 patients, 241 of which received infusion of BMC. The effect of BMC on left ventricular ejection fraction (LVEF) as a major functional parameter was evaluated. Analyzing the overall effect on the change in LVEF between baseline and follow-up value revealed a significant improvement in the BMCtreated group as compared to the control group (P = 0.04). Thus, considering the increase in LVEF during follow-up, transplantation of BMC may be a safe and beneficial procedure to support treatment of AMI. However, the functional improvement observed with this form of therapy was altogether relatively moderate and the studies were heterogeneous in design. Hence, further efforts aiming at large-scale, double-blind, randomized and placebo-controlled multi-center trials in conjunction with better definition of patients, which benefit from BMC infusion, appear to be warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号