首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A putative -glucosidase clone has been isolated from a cDNA library constructed from mRNA of barley aleurones treated with gibberellin A3 (GA). The clone is 2752 bp in length and has an uninterrupted open reading frame encoding a polypeptide of 877 amino acids. A 680 amino acid region is 43% identical to human lysosomal -glucosidase and other glycosyl hydrolases. In isolated aleurones, the levels of the corresponding mRNA increase strongly after the application of GA, similar to the pattern exhibited by low-pI -amylase mRNA. High levels are also observed in the aleurone and scutellum after germination, while low levels are found in developing seeds. The genome contains a single form of this -glucosidase gene and two additional sequences that may be related genes or pseudogenes.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

4.
Mucopolysaccharidosis III B (MPS III-B) is a rare lysosomal storage disorder caused by deficiencies in Alpha-N-acetylglucosaminidase (NAGLU) for which there is currently no cure, and present treatment is largely supportive. Understanding the structure of NAGLU may allow for identification of novel therapeutic targets for MPS III-B. Here we describe the first crystal structure of human NAGLU, determined to a resolution of 2.3?Å. The crystal structure reveals a novel homotrimeric configuration, maintained primarily by hydrophobic and electrostatic interactions via domain II of three contiguous domains from the N- to C-terminus. The active site cleft is located between domains II and III. Catalytic glutamate residues, E316 and E446, are located at the top of the (α/β)8 barrel structure in domain II. We utilized the three-dimensional structure of NAGLU to map several MPS III-B mutations, and hypothesize their functional consequences. Revealing atomic level structural information about this critical lysosomal enzyme paves the way for the design of novel therapeutics to target the underlying causes of MPS III-B.  相似文献   

5.
The manipulation of modular regulatory domains from allosteric enzymes represents a possible mechanism to engineer allostery into non-allosteric systems. Currently, there is insufficient understanding of the structure/function relationships in modular regulatory domains to rationally implement this methodology. The LeuA dimer regulatory domain represents a well-conserved, novel fold responsible for the regulation of two enzymes involved in branched chain amino acid biosynthesis, α-isopropylmalate synthase and citramalate synthase. The LeuA dimer regulatory domain is responsible for the feedback inhibition of these enzymes by their respective downstream products. Both enzymes display multidomain architecture with a conserved N-terminal TIM barrel catalytic domain and a C-terminal (βββα)2 LeuA dimer domain joined by a flexible linker region. Due to the similarity of three-dimensional structure and catalytic mechanism combined with low sequence similarity, we propose these enzymes can be classified as members of the LeuA dimer superfamily. Despite their similarity, members of the LeuA dimer superfamily display diversity in their allosteric mechanisms. In this review, structural aspects of the LeuA dimer superfamily are discussed followed by three examples highlighting the diversity of allosteric mechanisms in the LeuA dimer superfamily.  相似文献   

6.
7.
8.
9.
Receptor Activator of NF-κB Ligand (RANKL) plays a pivotal role as a regulator of osteoclast activity and is involved in osteoporosis. Here, we report the cloning and functional characterization of the complete extracellular domain of the porcine RANKL gene (sRANKL). The porcine sRANKL cDNA has an ORF of 744 nucleotides and shares 87%, 80% and 80% identity with human, rat and mouse RANKL coding sequences, respectively. The protein consists of 247 amino acids with 90%, 81% and 80% sequences similarities compared to human, mouse and rat RANKL, respectively. Over-expression of porcine sRANKL led to osteoclast formation. The osteoclasts showed a characteristic morphology, expressed the carbonic anhydrase type 2, were TRACP positive and exhibited a bone-resorbing activity.In conclusion, we first describe the molecular cloning and functional characterization of porcine sRANKL, which will help to understand the function of a RANKL gene in large animal models.  相似文献   

10.
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.  相似文献   

11.
12.
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches’ broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.  相似文献   

13.
K+ channel proteins native to animal membranes have been shown to be composed of two different types of polypeptides: the pore-forming subunit and the subunit which may be involved in either modulation of conductance through the channel, or stabilization and surface expression of the channel complex. Several cDNAs encoding animal K+ channel subunits have been recently cloned and sequenced. We report the molecular cloning of a rice plant homolog of these animal subunits. The rice cDNA (KOB1) described in this report encodes a 36 kDa polypeptide which shares 45% sequence identity with these animal K+ channel subunits, and 72% identity with the only other cloned plant (Arabidopsis thaliana) K+ channel subunit (KAB1). The KOB1 translation product was demonstrated to form a tight physical association with a plant K+ channel subunit. These results are consistent with the conclusion that the KOB1 cDNA encodes a K+ channel subunit.Expression studies indicated that KOB1 protein is more abundant in leaves than in either reproductive structures or roots. Later-developing leaves on a rice plant were found to contain increasing levels of the protein with the flag leaf having the highest titer of KOB1. Leaf sheaths are known to accumulate excess K+ and act as reserve sources of this cation when new growth requires remobilization of K+. Leaf sheaths were found to contain higher levels of KOB1 protein than the blade portions of leaves. It was further determined that when K+ was lost from older leaves of plants grown on K+-deficient fertilizer, the loss of cellular K+ was associated with a decline in both KOB1 mRNA and protein. This finding represents the first demonstration (in either plants or animals) that changes in cellular K+ status may specifically alter expression of a gene encoding a K+ channel subunit.  相似文献   

14.
A cDNA (zmEF1A) and the corresponding genomic clone (zmgEF1A) of a member of the gene family encoding the subunit of translation elongation factor 1 (EF-1) have been isolated from maize. The deduced amino acid sequence is 447 residues long interrupted by one intron. Southern blot analysis reveals that the cloned EF-1 gene is one member out of a family consisting of at least six genes. As shown by northern hybridizations in leaves the mRNA level increases at low temperature whereas time-course experiments over 24 h at 5°C show that in roots the overall mRNA level of EF-1 is transiently decreased. These results indicate that the expression of EF-1 is differently regulated in leaves and roots under cold stress.  相似文献   

15.
Amanita exitialis is a lethal mushroom in East Asia. α-Amanitin is one kind of the leading peptide toxins responsible for mushroom poisoning, which are mainly from the fatal amanitae. In the study, the full-length cDNA sequences of α-amanitin (α-AMA) and phallacidin (PHA) from A. exitialis were cloned and analyzed; in addition, the expression patterns of α-AMA in three parts as well as four developmental stages of the fruitbody were first characterized by quantitative real-time PCR. Results demonstrate that α-AMA and PHA were highly homologous to the toxin genes reported from A. bisporigera; the α-AMA could be expressed in all parts and stages of the fruitbody, from late elongation stage to late mature stage, α-AMA showed the highest expression level in the pileus, followed by the stipe and volva in sequence, while at the early elongation stage, the highest expression level was found in the stipe, followed by the pileus and volva. Further analysis revealed that the higher expression level of α-AMA was closely associated with the development stages, and the expression of α-AMA was accumulated in the more vigorous growth parts and stages, from which could be inferred that α-AMA might play an important role in the development of A. exitialis.  相似文献   

16.

A novel gene (ANK58566) encoding a cold-active α-amylase was cloned from marine bacterium Bacillus sp. dsh19-1 (CCTCC AB 2015426), and the protein was expressed in Escherichia coli. The gene had a length of 1302 bp and encoded an α-amylase of 433 amino acids with an estimated molecular mass of 50.1 kDa. The recombinant α-amylase (AmyD-1) showed maximum activity at 20 °C and pH 6.0, and retained about 35.7% of activity at 4 °C. The AmyD-1 activity was stimulated by Ca2+ and Na+. However, the chelating agent, EDTA, inactivated the enzyme. Moreover, AmyD-1 displayed extreme salt tolerance, with the highest activity in the presence of 2.0 M NaCl and 60.5% of activity in 5.0 M NaCl. The Km, Vmax and kcat of AmyD-1 in 2.0 M NaCl were 2.8 mg ml−1, 21.8 mg ml−1 min−1 and 933.5 s−1, respectively, at 20 °C and pH 6.0 with soluble starch as substrate. MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry) revealed that the end products of starch hydrolysis by AmyD-1 were glucose, maltose, maltotriose, maltotetraose, and malt oligosaccharides. Thus, AmyD-1 is one of the very few α-amylases that can tolerate low temperatures and high salt concentrations, which makes it to be a potential candidate for research in basic and applied microbiology.

  相似文献   

17.
18.
Few studies have investigated microtubules from plants that host pathogenic fungi. Considerable efforts are underway to find an antimitotic agent against plant pathogens like Phytophthora infestans. However, screening the effects of antifungal agents on plant tubulin in vivo or using purified native microtubule in vitro is a time consuming process. A recombinant, correctly folded, microtubule-like structure forming tubulin could accelerate research in this area. In this study, we cloned full length cDNAs isolated from potato leaves using reverse-transcribed polymerase chain reaction (RT-PCR). Solanum tuberosum (Stub) α-tubulin and β-tubulin were predicted to encode 449 and 451 amino acid long proteins with molecular masses of 57 kDa and 60 kDa, respectively. Average yields of α- and β-tubulin were 2.0–3.5 mg l?1 and 1.3–3.0 mg l?1 of culture, respectively. The amino acids, His6, Glu198, and Phe170 involved in benomyl sensitivity were conserved in Stub tubulin. The dimerization of tubulin monomers was confirmed by western blot analysis. When combined under appropriate conditions, these recombinant α- and β-tubulins were capable of polymerizing into microtubules. Accessibility of cysteine residues of tubulin revealed that important ligand binding sites were folded correctly. This recombinant tubulin could serve as a control of phytotoxicity of selected antimitotic fungicide compounds during in vitro screening experiments.  相似文献   

19.
GD3, a minor ganglioside in most normal tissues, is involved in important biological events and its expression could increase in pathological conditions. Organism integrity requires a tight balance between the anabolic and catabolic processes, thus it is important to control the intracellular expression of those “key” enzymes, which act at the “branching point” of ganglioside metabolism; one of these is the GD3-synthase (ST8Sia I). In this paper, we report the sequences of two ST8Sia I mRNAs found in Xenopus laevis and their genomic organization; the canonical form resulted constituted of 5 exons and 4 introns, while the “short” mRNA lacks of the exon 2. The expression of the two ST8Sia I mRNAs during embryo development and their tissue distribution in adult animals showed the single or simultaneous presence of the two forms. Experiments of in vitro expression and evaluation of enzymatic activity of the two hypothetical proteins turned out to be ST8Sia I. In the end, considering the growing interest toward the specie Xenopus tropicalis, due to its diploid genome that render it more suitable for genetic studies, we also cloned X. tropicalis ST8Sia I. Accession numbers: AY272057, AY272056  相似文献   

20.
We found a novel cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. G-825-6. The enzyme was expressed in the culture broth by recombinant Bacillus subtilis KN2 and was purified and characterized. The enzyme named CGTase825-6 showed 95% amino acid sequence identity with a known enzyme β-/γ-CGTase from Bacillus firmus/lentus 290-3. However, the product specificity of CGTase825-6 differed from that of β-/γ-CGTase. CGTase825-6 produced γ-cyclodextrin (CD) as the main product, but degradation of γ-CD was observed with prolonged reaction. The product specificity of the enzyme was positioned between γ-CGTase produced by Bacillus clarkii 7364 and B. firmus/lentus 290-3 β-/γ-CGTase. It showed that the difference of product specificity was dependent on only 28 amino acid residues in 671 residues in CGTase825-6. We compared the amino acid sequence of CGTase825-6 and those of other CGTases and constructed a protein structure model of CGTase825-6. The comparison suggested that the diminished loop (Val138-Asp142) should provide subsite -8 for γ-CD production and that Asp142 might have an important role in product specificity. CGTase825-6 should be a useful tool to produce γ-CD and to study the differences of producing mechanisms between γ-CD and β-CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号