首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TGFbeta1 and Treg cells: alliance for tolerance   总被引:1,自引:0,他引:1  
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (Treg)-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca2+-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in Treg cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (Th IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.  相似文献   

2.
Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T-cell transfer was more obligatory than exogenous IL-2 treatment to sustain adoptively transferred T cells in vivo. Ag-specific T-cell responses were weak in mice that either received IL-2 alone or did not receive the cognate peptide boost after T-cell transfer. The T-cell clones were also monitored by flow cytometry or RT-PCR based on expression of the T-cell receptor Vbeta-chain, which was previously characterized. Ag-specific T cells were recovered from both spleens and lungs of recipient mice, demonstrating that the T-cell clones could localize to both lymphoid and nonlymphoid tissues. This study demonstrates that both uncultured and in vitro-cloned T lymphocytes can migrate to lymphoid tissues and nonlymphoid (e.g., lung) tissues in recipient hosts and that their functional activities can be maintained at these sites after transfer, if they are exposed to peptide Ag in vivo.  相似文献   

3.
IL-7 is critically involved in regulating peripheral T cell homeostasis. To investigate the role of IL-7 on lymphopenia-induced proliferation of polyclonal lymphocytes, we have transferred CFSE-labeled cells into a novel T-lymphopenic, IL-7-transgenic mouse line. Results obtained indicate that T and B cells do not respond in the same way to IL-7-homeostatic signals. Overexpression of IL-7 enhances proliferation of both CD4(+) and CD8(+) T cells but with distinctly temporal effects. Expansion of naturally arising CD4(+)-regulatory T cells was like that of conventional CD4(+) T cells. IL-7 had no effect on B cell proliferation. By immunohistology, transferred T cells homed to T cell areas of spleen lymphoid follicles. Increasing IL-7 availability enhanced T cell recovery by promoting cell proliferation and reducing apoptosis during early stages of lymphopenia-induced proliferation. Taken together, these results provide new insights into the pleiotropic effects of IL-7 on lymphopenia-induced T cell proliferation.  相似文献   

4.
We have investigated the biochemical mechanism by which interleukin-1 (IL-1) serves as a comitogen with agents that directly activate the antigen receptor in T lymphocytes. We have studied the human T cell line Jurkat, which can be stimulated to produce Interleukin-2 by treatment with antibodies that bind to the CD3-antigen receptor complex and hence represents a model system for T cell activation. Using highly purified, recombinant human IL-1, we show that IL-1 stimulates rapid diacylglycerol and phosphorylcholine production from phosphatidylcholine (PC) in the absence of phosphatidylinositol turnover in Jurkat cells. This effect is also observed in peripheral blood T cells and a murine T cell line. The EC50 for IL-1 was 28 fM, and PC hydrolysis was detectable within 5 sec at 37 degrees C. The murine cell line had typical high-affinity IL-1 receptors (kd = 7 X 10(-11) M). However, we were unable to detect IL-1 binding to Jurkat cells. This reaction occurs via a novel mechanism and may explain the comitogenic activity of IL-1 in T lymphocyte activation as well as many of the pleiotropic biologic effects of this cytokine.  相似文献   

5.
Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3zeta, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3zeta down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3zeta-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3zeta(-). CD8 T cells with down-modulated CD3zeta also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR(+) CD62L(-)). After T-cell activation, CD3zeta-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor alpha-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3zeta is not reexpressed even after IL-2 exposure.  相似文献   

6.
7.
Acute viral infections induce immune deficiencies, as shown by unresponsiveness to mitogens and unrelated antigens. T lymphocytes isolated from mice acutely infected with lymphocytic choriomeningitis virus (LCMV) were found in this study to undergo activation-induced apoptosis upon signalling through the T-cell receptor (TcR)-CD3 complex. Kinetic studies demonstrated that this sensitivity to apoptosis directly correlated with the induction of immune deficiency, as measured by impaired proliferation in response to anti-CD3 antibody or to concanavalin A. Cell cycling in interleukin-2 (IL-2) alone stimulated proliferation of LCMV-induced T cells without inducing apoptosis, but preculturing of T cells from acutely infected mice in IL-2 accelerated apoptosis upon subsequent TcR-CD3 cross-linking. T lymphocytes isolated from mice after the acute infection were less responsive to IL-2, but those T cells, presumably memory T cells, responding to IL-2 were primed in each case to die a rapid apoptotic death upon TcR-CD3 cross-linking. These results indicate that virus infection-induced unresponsiveness to T-cell mitogens is due to apoptosis of the activated lymphocytes and suggest that the sensitization of memory cells by IL-2 induced during infection will cause them to die upon antigen recognition, thereby impairing specific responses to nonviral antigens.  相似文献   

8.
9.
Regulation of activation-induced cell death of mature T-lymphocyte populations   总被引:11,自引:0,他引:11  
Resting mature T lymphocytes are activated when triggered via their antigen-specific T-cell receptor (TCR) to elicit an appropriate immune response. In contrast, preactivated T cells may undergo activation-induced cell death (AICD) in response to the same signals. along with cell death induced by growth factor deprivation, AICD followed by the elimination of useless or potentially harmful cells preserves homeostasis, leads to the termination of cellular immune responses and ensures peripheral tolerance. T-cell apoptosis and AICD are controlled by survival cytokines such as interleukin-2 (IL-2) and by death factors such as tumor necrosis factor (TNF) and CD95 ligand (CD95L). In AICD-sensitive T cells, stimulation upregulates expression of one or several death factors, which in turn engage specific death receptors on the same or a neighboring cell. Death receptors are activated by oligomerization to rapidly assemble a number of adapter proteins and enzymes to result in an irreversible activation of proteases and nucleases that culminates in cell death by apoptosis. Increased knowledge of the molecular mechanisms that regulate AICD of lymphocytes opens new immunotherapeutic perspectives for the treatment of certain autoimmune diseases, and has implications in other areas such as transplantation medicine and AIDS research.  相似文献   

10.
Interleukin-4. A regulatory protein   总被引:2,自引:0,他引:2  
Since its discovery in 1982, numerous biological activities of interleukin-4 (IL-4) have been described. Like other cytokines, IL-4 is highly pleiotropic, both with respect to the number of different target cells that are responsive to it and with respect to the number of different biological responses it elicits. Interleukin-4 was initially described as a costimulant for the proliferation of B lymphocytes stimulated with anti-IgM antibody. Synonyms for this cytokine are B cell growth factor-1 (BCGF-1) and B cell stimulatory factor-1 (BSF-1). After cloning of both the murine and human IL-4, the use of recombinant IL-4 enabled detailed studies of its biological functions. Many cell types, mainly of hematological origin, express receptors for IL-4. Accordingly, effects of IL-4 have been described on B lymphocytes, T lymphocytes, NK cells, mononuclear phagocytes, mast cells, fibroblasts and hematopoietic progenitor cells. Currently, there are three major areas in which IL-4 appears to play an important role: 1) regulation of B cell growth and of antibody isotype expression. In this context, a possible role for IL-4 in allergic reactions is of special interest. 2) Stimulation of T cell growth and the generation of cytotoxic T lymphocytes. In addition to the suppressive effects on the induction of non HLA-restricted cellular cytotoxicity by natural killer- (NK) and lymphokine-activated killer (LAK) cells, this suggests a role for IL-4 in the regulation of cellular immune responses. 3) Regulation of the growth and differentiation of hematopoietic bone marrow stem cells. IL-4 itself does not induce proliferation of hematological progenitor cells but it can modulate the growth-factor dependent proliferation of these cells. In this review the biological functions of IL-4, reported until present, are discussed.  相似文献   

11.
Ontogenetic, homeostatic, and functional deficiencies within immunoregulatory natural T (iNKT) lymphocytes underlie various inflammatory immune disorders including autoimmunity. Signaling events that control cell fate specification and molecular differentiation of iNKT cells are only partly understood. Here we demonstrate that these processes within iNKT cells require classical NF-kappaB signaling. Inhibition of NF-kappaB signaling blocks iNKT cell ontogeny at an immature stage and reveals an apparent, novel precursor in which negative selection occurs. Most importantly, this block occurs due to a lack of survival signals, as Bcl-x(L) overexpression rescues iNKT cell ontogeny. Maturation of immature iNKT cell precursors induces Bcl-2 expression, which is defective in the absence of NF-kappaB signaling. Bcl-x(L) overexpression also rescues this maturation-induced Bcl-2 expression. Thus, antiapoptotic signals relayed by NF-kappaB critically control cell fate specification and molecular differentiation of iNKT cells and, hence, reveal a novel role for such signals within the immune system.  相似文献   

12.
IFN-alpha exerts prominent regulatory functions on the immune system. One such effect is the inhibition of proliferation of in vitro stimulated T lymphocytes. The exact physiological function of this activity is not known, but it has been implicated in the antiviral effects of IFN, its antitumor action in T-cell malignancies, and the regulation of the in vivo T-cell response. Here, we have investigated the mechanism underlying the IFN-alpha-mediated growth inhibition of normal human PHA- and IL-2-stimulated T lymphocytes by an analysis of how IFN-alpha treatment influences known molecular events that normally accompany the transition from quiescence to proliferation in these cells. IFN-alpha treatment was found to profoundly block S-phase entry of stimulated T lymphocytes. This correlated with a strong inhibition of IL-2-induced changes in G1-regulatory proteins, including the prevented up-regulation of G1 cyclins and cyclin-dependent kinases as well as an abrogation of mitogen-induced reduction of p27Kip1 levels. This latter effect was due to a maintained stability of the p27Kip1 protein in the IFN-alpha-treated cells. In line with these findings, phosphorylation of the pocket proteins was abrogated in IFN-alpha-treated cells. Furthermore, our data indicate that IFN-alpha has selective effects on the pathways that emerge from the IL-2 receptor because IFN-alpha treatment does not block IL-2-induced up-regulation of c-myc or Cdc25A.  相似文献   

13.
E J Kucharz  J S Goodwin 《Life sciences》1988,42(16):1485-1491
Interleukin-2 (IL-2) is an important modulator of cell-mediated immunity. Its activity is suppressed by various serum inhibitors generated under normal and pathological conditions. It is believed that an inhibitor which occurs in normal serum is a T-cell derived heat labile protein (or protein-glycolipid complex), and it acts in a homeostatic mechanism to restrict IL-2 action to the vicinity of the activated T cells. Changes in inhibitory activity have been found in various physiological and pathological states, e.g. during ontogeny, in systemic lupus erythematosus, in rheumatoid arthritis, and with some systemic infections. There are also suggestions that some tumor cells generate IL-2 inhibitors which diminish killer cell activity against the tumor. It is possible that a better understanding of IL-2 inhibitors would help elucidate some pathological mechanisms connected with disturbed cellular immune responses.  相似文献   

14.
Concanavalin A (Con A), cloned interleukin 2 (IL-2), purified interleukin 1 (IL-1) or two different crude preparations containing IL-1 activity alone, did not induce proliferation of rigorously accessory cell (AC)-depleted splenic L3T4+ or Lyt 2+ lymphocytes. Con A together with saturating concentrations of cloned IL-2 (100 U/ml) promoted less than 40% of the proliferative responses observed in AC-supplemented L3T4+ and Lyt 2+ T-cell cultures. The three preparations of IL-1 used supported minimal proliferation of Con A-treated purified L3T4+ or Lyt 2+ lymphocytes. However, all these IL-1 preparations promoted significant growth of the T-cell populations if AC (1%) were included in the cultures. Cloned IL-2 combined with purified IL-1 promoted proliferation of Con A-treated L3T4+ and Lyt 2+ lymphocytes achieving approximately 75% of the responses observed in AC-supplemented T-cell cultures. The additive effect of IL-1 was apparent in the presence of saturating concentrations of cloned IL-2. Finally, Con A alone induced a detectable number of both L3T4+ and Lyt 2+ lymphocytes to express IL-2 receptors as determined with the anti-mouse IL-2 receptor antibody 7D4 by immunofluorescence and FACS analysis. Purified IL-1 neither induced detectable number of L3T4+ or Lyt 2+ T cells to express IL-2 receptors nor increased the number of Con A-treated T cells bearing IL-2 receptors. We have interpreted these findings to indicate the following: Con A alone is sufficient to induce highly purified L3T4+ and Lyt 2+ lymphocytes to express IL-2 receptors. Cloned IL-2 and purified IL-1 are required for optimal growth of L3T4+ and Lyt 2+ lymphocytes and these cytokines together efficiently replace AC in growth of T cells initiated by Con A. IL-1 alone does not replace AC in Con A-induced activation of mouse T cells. IL-1 exerts potentiation on IL-2-driven growth of Con A-treated L3T4+ and Lyt 2+ lymphocytes. The additive activity of IL-1 on growth of normal T cells is not due to increased production of IL-2 in the cultures or induction of normal T cells to expression of IL-2 receptors by IL-1. We propose that IL-1 optimizes the action and/or interaction of IL-2 with its receptors on the T-cell membrane (by, i.e., increasing affinity of the IL-2 receptor for its ligand and/or stabilizing the IL-2 receptor).  相似文献   

15.
BACKGROUND: Human V gamma 9/V delta 2 T lymphocytes recognize nonpeptidic antigens in a manner distinct from the classical antigen recognition by alpha beta T cells. The apparent lack of major histocompatibility (MHC) restriction and antigen processing allows very fast responses against pathogenic insults. To address the potential functional requirement for accessory molecules, we investigated the roles of the CD2 and lymphocyte function-associated antigen (LFA)-1 T-cell co-receptors in antigen-induced activities of human V gamma 9/V delta 2 T-cell clones. MATERIALS AND METHODS: Human peripheral blood V gamma 9/V delta 2 T lymphocytes were cloned and their cytotoxicity against Daudi lymphoma was measured by a standard 51Cr-release assay. The responses of V gamma 9/V delta 2 T lymphocytes to nonpeptidic antigens were assessed using DNA synthesis and cytokine ELISA assays. Monoclonal antibodies specific for various molecules with potential T-cell accessory functions were utilized in blocking assays. RESULTS: All of our V gamma 9/V delta 2 T-cell clones displayed the Th1 phenotype. The anti-LFA-1 antibody strongly inhibited the cytotoxicity of V gamma 9/V delta 2 T cells against Daudi B-cell lymphoma; whereas, it had no influence on the antigen-induced cytokine release or proliferation. In contrast, antibodies against CD2 and LFA-3 had no effect on the lytic activity of V gamma 9/V delta 2 T cells, but strongly inhibited the cytokine release and proliferation. However, the CD2-LFA-3 interaction was not an absolute requirement for the cytokine release and the DNA synthetic activity of antigen-stimulated V gamma 9/V delta 2 T cells, since the inhibitory effect could be reversed by addition of exogenous interleukin 2 (IL-2). CONCLUSIONS: These novel observations indicate that the signals generated by different accessory molecules and IL-2 can contribute in an integrated fashion to the regulation of V gamma 9/V delta 2 T cells. These interactions may be important for the effectiveness of V gamma 9/V delta 2 T-cell responses.  相似文献   

16.
IL-15 and IL-2: a matter of life and death for T cells in vivo   总被引:17,自引:0,他引:17  
Interleukin (IL)-2 and IL-15 are redundant in stimulating T-cell proliferation in vitro. Their precise role in vivo in governing T-cell expansion and T-cell homeostasis is less clear. Each may have distinct functions and regulate distinct aspects of T-cell activation. The functional receptors for IL-2 and IL-15 consist of a private alpha-chain, which defines the binding specificity for IL-2 or IL-15, and shared IL-2 receptor beta- and gamma-chains. The gamma-chain is also a critical signaling component of IL-4, IL-7 and IL-9 receptors. Thus, the gamma-chain is called the common gamma or gamma-c. As these receptor subunits can be expressed individually or in various combinations resulting in the formation of receptors with different affinities, distinct signaling capabilities or both, we hypothesized that differential expression of IL-2 and IL-15 receptor subunits on cycling T cells in vivo may direct activated T cells to respond to IL-2 or IL-15, thereby regulating the homeostasis of T-cell response in vivo. By observing in vivo T-cell divisions and expression of IL-2 and IL-15 receptor subunits, we demonstrate that IL-15 is a critical growth factor in initiating T cell divisions in vivo, whereas IL-2 limits continued T-cell expansion via downregulation of the gamma-c expression. Decreased gamma-c expression on cycling T cells reduced sustained Bcl-2 expression and rendered cells susceptible to apoptotic cell death. Our study provides data that IL-2 and IL-15 regulate distinct aspects of primary T-cell expansion in vivo.  相似文献   

17.
Self-Ia-reactive cloned T-cell lines, designated PK, were established by long-term culture of T cells from normal DBA/2 mice with irradiated syngeneic splenic adherent cells (SAC), rich in macrophages and dendritic cells. The cell lines were Thy 1+, Lyt 1+, Lyt 2-, produced IL-2 following stimulation with syngeneic spleen cells, and did not exhibit alloreactivity when screened against six different H-2 haplotypes. Of the five cloned PK cell lines tested, four were I-Ed restricted while one was I-Ad restricted as determined by genetic mapping and blocking studies carried out with monoclonal anti-Ia sera. Extensive specificity studies suggested that the PK cells reacted to syngeneic Ia molecules alone and not to foreign antigens such as fetal calf serum (FCS) used in the culture medium, in association with self-Ia. SAC pulsed with FCS or other protein antigens such as turkey gamma-globulin (TGG) were tested for their ability to induce proliferation of autoreactive T cells and other antigen-specific T cells using culture conditions consisting of serumless medium and interleukin 2 (IL-2). The data showed that the autoreactive T cells proliferated better in response to antigen-unpulsed SAC, while FCS-specific and TGG-specific cell lines, developed independently, proliferated only in response to FCS- or TGG-pulsed SAC, respectively, but not to antigen-unpulsed SAC. These results clearly distinguished the autoreactive T-cell clones from the antigen-specific T-cell clones. Preliminary studies carried out to investigate the functions of autoreactive T cells suggested that these cells helped in the in vitro differentiation of alloantigen-specific cytotoxic T lymphocytes (CTL) from CTL precursors obtained from the thymus and augmented syngeneic, allogeneic, and antigen-specific immune responses in vitro. The autoreactive T cells were also capable of inducing both proliferation and differentiation of antigen-specific populations of B cells in the absence of antigen. The present investigation suggests that autoreactive, non-antigen-reactive T cells can be cloned from normal, unimmunized mice and that such cell lines may provide a powerful tool for analyzing the role of the syngeneic mixed lymphocyte reaction in induction and maintenance of both T-and B-cell immune responses.  相似文献   

18.
We have previously used human Epstein Barr virus (EBV)-transformed B lymphoblastoid cell lines for the identification and purification of a novel cytokine, natural killer cell stimulatory factor (NKSF/IL-12), that has pleiotropic effects on human lymphocytes. B cell lines are also routinely employed as feeder cells for the culture of T and natural killer (NK) cells. In this report we describe the ability of two NKSF/IL-12 producing B cell lines (RPMI-8866 and Cess) and two nonproducing lines (Raji and Daudi) to stimulate the proliferation of T and NK cells in 8-day PBL cultures. We demonstrate, using an anti-NKSF/IL-12 neutralizing monoclonal antibody, that the endogenous production of NKSF/IL-12 in these cultures can significantly enhance the proliferation and cytotoxic activity of T and NK cells. We also report that the addition of exogenous rNKSF/IL-12 can greatly increase the number of T and NK cells obtained from the cultures following stimulation by the B cell lines. Aside from the possible practical applications, the enhanced proliferation of T and NK cells consistently observed in the presence of endogenously produced NKSF/IL-12 or exogenously added rNKSF/IL-12 in this system may further our understanding of the role of this cytokine during an in vivo immune response.  相似文献   

19.
Adhesion molecules are important for cell trafficking and delivery of secondary signals for stimulation of T cells and antigen-presenting cells (APCs) in a variety of immune and inflammatory responses. Adhesion molecules lymphocyte function-associated antigen (LFA)-1 and CD2 on T cells recognize intercellular adhesion molecule (ICAM)-1 and LFA-3 on APCs, respectively. Recent studies have suggested that these molecules might play a regulatory role in antigen-specific immune responses. To investigate specific roles of adhesion molecules in immune induction we coimmunized LFA-3 and ICAM-1 cDNAs with a gD plasmid vaccine and then analyzed immune modulatory effects and protection against lethal herpes simplex virus (HSV)-2 challenge. We observed that gD-specific IgG production was enhanced by LFA-3 coinjection. However, little change in IgG production was observed by ICAM-1 coinjection. Furthermore, both Th1 and Th2 IgG isotype production was driven by LFA-3. LFA-3 also enhanced Th cell proliferative responses and production of interleukin (IL)-2, interferon-gamma, IL-4, and IL-10 from splenocytes. In contrast, ICAM-1 showed slightly increasing effects on T-cell proliferation responses and cytokine production. beta-Chemokine production (RANTES, MIP-1alpha, and MCP-1) was also influenced by LFA-3 or ICAM-1. When animals were challenged with a lethal dose of HSV-2, LFA-3-coimmunized animals exhibited an enhanced survival rate, as compared to animals given ICAM-1 or gD DNA vaccine alone. This enhanced protection appears to be mediated by CD4+ T cells, as determined by in vitro and in vivo T-cell subset deletion. These studies demonstrate that adhesion molecule LFA-3 can play an important role in generating protective antigen-specific immunity in the HSV model system through increased induction of CD4+ Th1 T-cell subset.  相似文献   

20.
UDP-GlcNAc:Galβ1 → 3GalNAc-R β1 → 6N-acetylglucosaminyltransferase (Core2 N-acetyl-glucosaminyltransferase, C2GnT; EC 2.4.1.102) forms β1 → 6N-acetyl-glucosaminyl linkages in O-glycoproteins and creates branches for the addition of N-acetyl-lactosamine antennae. Changes in C2GnT activity have been associated with immune disorders, malignancies, and T-cell ontogeny. In this study, we used SCID (severe combined immune deficiency) mice to determine the effects of C2GnT overexpression on hemopoiesis, and in particular, on thymocyte development. BALB/c bone marrow cells transfected with C2GnT using the retroviral murine stem cell vector were used to repopulate SCID mice. Mice were analysed 3 weeks to 3 months after bone marrow transfer. Elevated levels of C2GnT activity in bone marrow, spleen, and thymus from mice repopulated with C2GnT transfected bone marrow cells indicated that C2GnT was overexpressed in recipient mice. In C2GnT repopulated mice, up to 50% of T cells showed an increase in CD43 130-kDa expression, compared with T cells from control animals, indicative of an elevated C2GnT activity in these cells. Furthermore, T-cell subset numbers appeared to be normal, suggesting that C2GnT overexpression did not alter T-cell ontogeny. Interestingly, C2GnT overexpression negatively affected the repopulation of myeloid cells. Only insignificant numbers of interleukin-3/granulocyte-macrophage colony stimulating factor (IL-3/GM-CSF) responsive bone marrow cells were found to be retrovirally transfected in C2GnT repopulated mice, whereas up to 50% of IL-3/GM-CSF responsive bone marrow cells were found to be retrovirally transfected in corresponding controls. These data indicate that in vivo overexpression of C2GnT negatively interferes with the myeloid differentiation pathway but does not affect T-cell development. J. Cell. Physiol. 176:350–358, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号