首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of UVC radiation (lambda = 254 nm, 85 J/m2) and/or 1-beta-D-arabino-furanosylcytosine (araC, 2 x 10(-3) M, 2 h) on two mouse lymphoma cell lines, UVC-sensitive and X-ray resistant L5178Y-R and UVC-resistant and X-ray sensitive L5178Y-S, were investigated. AraC treatment inhibited the semiconservative DNA replication to 1.4% and 3.8% in L5178Y-R and L5178Y-S cells, respectively, and decreased the sedimentation distance of nucleoids from the cells of both lines. The shortening of sedimentation distances induced by UVC and araC treatment was 8.1 mm for L5178Y-R cells and 11.8 mm for L5178Y-S, and indicated a higher number of DNA breaks in L5178Y-S cells. Assuming that such breaks are the result of the inhibition of DNA repair replication by araC, we conclude that L5178Y-S cells have a greater number of repaired sites than L5178Y-R cells.  相似文献   

2.
We have studied the effect of novobiocin treatment on radiation-induced damage and its repair in higher-order DNA structure in two mouse leukemia cell lines differing in their radiosensitivity, L5178Y-R (LY-R) and L5178Y-S (LY-S). We used the fluorescent halo technique to measure alterations in the superhelical density and the topological constraints of DNA in LY-R and LY-S nucleoids. The results for untreated cells show that both cell lines reached maximal DNA unwinding at the same concentration of propidium iodide (PI), whereas LY-S nucleoids were less efficient in their ability to rewind their DNA. The loop size did not differ significantly between the cell lines. Incubation of LY-R and LY-S cells with novobiocin at a concentration which does not influence survival (0.1 mM for 45 min), but inhibits DNA synthesis in LY-R cells (by 28%) to a greater extent than in LY-S cells (by 10%), also causes more DNA unwinding in LY-R nucleoids than in LY-S nucleoids. However, a decreased superhelical density was observed in nucleoids from both cell lines. Novobiocin applied before, and present during, irradiation prevents radiation-induced alterations in DNA supercoiling more efficiently in LY-R than in LY-S cells. The presence of novobiocin during the repair period increased DNA rewinding to levels not significantly different from control values in nucleoids from both cell lines.  相似文献   

3.
The purpose of this study was to investigate the role of DNA and chromosome repair in determining the difference in radiosensitivity between a radiosensitive murine leukemic lymphoblastoid cell line, L5178Y-S, and its radioresistant counterpart, L5178Y-R. Populations of cells in the G1 or G2 phase of the cell cycle were obtained by centrifugal elutriation and irradiated with X-ray doses up to 10 Gy and allowed to repair at 37 degrees C for various periods. The kinetics of DNA double-strand break repair was estimated using the DNA neutral filter elution method, and the kinetics of chromosome repair was measured by premature chromosome condensation. L5178Y-S cells exhibited decreased repair rates and limited repair capacity at both the DNA and chromosome level in both G1 and G2 phases when compared to L5178Y-R cells. For the repair-competent L5178Y-R cells, the rate of DNA repair was similar in G1 and G2 cells and exhibited both fast and slow components. While the kinetics of chromosome break repair in G1 cells was similar to that of DNA repair, chromosome repair in G2 cells had a diminished fast component and lagged behind DNA repair in terms of fraction of damage repaired. Interestingly, concomitant with a diminished repair capacity in L5178Y-S cells, the number of chromatid exchanges in G2 cells increased with time, whereas it remained constant with repair time in L5178Y-R cells. These results suggest that the basis for the exceptional radiosensitivity of L5178Y-S cells is a defect in the repair of both DNA double-strand breaks and chromosome damage.  相似文献   

4.
To better understand the basis for the difference in radiosensitivity between the variant murine leukemic lymphoblast cell lines L5178Y-R (resistant) and L5178Y-S (sensitive), the production and repair of DNA damage after X irradiation were measured by the DNA alkaline and neutral elution techniques. The initial yield of single-strand DNA breaks and the rates of their repair were found to be the same in both cell lines by the DNA alkaline elution technique. Using the technique of neutral DNA elution, L5178Y-S cells exhibited slightly increased double-strand breakage immediately after irradiation, most significantly at lower doses (i.e., less than 10 Gy). Nevertheless, even at doses that yielded equal initial double-strand breakage of both cell lines, the survival of L5178Y-S cells was significantly less than that of L5178Y-R cells. When the technique of neutral DNA elution was employed to measure the kinetics of DNA double-strand break repair, both cell lines exhibited biphasic fast and slow components of repair. However, the double-strand repair rate was much lower in the radiosensitive L5178Y-S cells than in the L5178Y-R cells (T1/2 of 60 vs 16 min). This difference was more pronounced in the fast-repair component. These results suggest that the repair of double-strand DNA breaks is an important factor determining the radiosensitivity of L5178Y cells.  相似文献   

5.
Mouse lymphoma strains L5178Y-R (LY-R) and L5178Y-S (LY-S), which are differentially sensitive to the cytotoxic effects of ionizing radiation, were found to differ in their abilities to repair potentially lethal damage (PLD) and sublethal damage (SLD). The results showed that strain LY-R was more proficient than strain LY-S in the repair of SLD. The split dose recovery observed in strain LY-S could be accounted for by its recovery during postirradiation incubation. In contrast, SLD repair occurred in the absence of PLD repair in strain LY-R. The possibility that the repair of PLD might be completed prior to the postirradiation incubation in strain LY-R was suggested by the decreased survival observed when the cells were irradiated in a hypotonic solution. The repair of PLD and SLD in strain LY-S was temperature sensitive, occurring during postirradiation incubations between 15 and 34 degrees C, but not at 37 or 40 degrees C. This temperature sensitivity is very similar to the temperature sensitivity of the repair of pH 9.6-labile lesions in DNA in strain LY-S, as reported previously. Thus postirradiation cellular recovery processes in strain LY-S may involve the repair of pH 9.6-labile lesions in DNA. Temperature-dependent changes in the postirradiation distribution of cells throughout the cell cycle were observed which could contribute to the temperature sensitivity of the postirradiation recovery of strain LY-S.  相似文献   

6.
Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA ligase IV assemble at DSBs and that the protein kinase activity of DNA-PKcs is essential for NHEJ-mediated repair of DSBs in vivo. We previously identified a cluster of autophosphorylation sites between amino acids 2609 and 2647 of DNA-PKcs. Cells expressing DNA-PKcs in which these autophosphorylation sites have been mutated to alanine are highly radiosensitive and defective in their ability to repair DSBs in the context of extrachromosomal assays. Here, we show that cells expressing DNA-PKcs with mutated autophosphorylation sites are also defective in the repair of IR-induced DSBs in the context of chromatin. Purified DNA-PKcs proteins containing serine/threonine to alanine or aspartate mutations at this cluster of autophosphorylation sites were indistinguishable from wild-type (wt) protein with respect to protein kinase activity. However, mutant DNA-PKcs proteins were defective relative to wt DNA-PKcs with respect to their ability to support T4 DNA ligase-mediated intermolecular ligation of DNA ends. We propose that autophosphorylation of DNA-PKcs at this cluster of sites is important for remodeling of DNA-PK complexes at DNA ends prior to DNA end joining.  相似文献   

7.
Repair of chromosome breaks by non-homologous end joining requires the XRCC4-ligase IV complex, Ku, and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). DNA-PKcs must also retain kinase activity and undergo autophosphorylation at six closely linked sites (ABCDE sites). We describe here an end-joining assay using only purified components that reflects cellular requirements for both Ku and kinase-active DNA-PKcs and investigate the mechanistic basis for these requirements. A need for DNA-PKcs autophosphorylation is sufficient to explain the requirement for kinase activity, in part because autophosphorylation is generally required for end-joining factors to access DNA ends. However, DNA-PKcs with all six ABCDE autophosphorylation sites mutated to alanine allows access to ends through autophosphorylation of other sites, yet our in vitro end-joining assay still reflects the defectiveness of this mutant in cellular end joining. In contrast, mutation of ABCDE sites to aspartate, a phosphorylation mimic, supports high levels of end joining that is now independent of kinase activity. This is likely because DNA-PKcs with aspartate substitutions at ABCDE sites allow access to DNA ends while retaining affinity for Ku-bound ends and stabilizing recruitment of the XRCC4-ligase IV complex. Autophosphorylation at ABCDE sites thus apparently directs a rearrangement of the DNA-PK complex that ensures access to broken ends and joining steps are coupled together within a synaptic complex, making repair more accurate.  相似文献   

8.
We investigated the role of initial DNA and chromosome damage in determining the radiosensitivity difference between the variant murine leukemic lymphoblast cell lines L5178Y-S (sensitive) and L5178Y-R (resistant) and the difference in cell cycle-dependent variations in radiosensitivity of L5178Y-S cells. We measured initial DNA damage (by the neutral filter elution method) and chromosome damage (by the premature chromosome condensation method) and compared them with survival (measured by cloning) for both cell lines synchronized in G1 or G2 phase of the cell cycle (by centrifugal elutriation) and irradiated with low doses of X rays (up to 10 Gy). The initial yield of DNA and chromosome damage in G2 L5178Y-S cells was almost twice that in G1 L5178Y-S cells and G1 or G2 L5178Y-R cells. In all cases DNA damage expressed as relative elution corresponded with chromosome damage (breaks in G1 chromosomes, breaks and gaps in G2 chromosomes). Also we found that the initial DNA and chromosome damage did not determine cell age-dependent radiosensitivity variations in L5178Y-S cells, as there was less initial damage in the more sensitive G1 phase than in the G2 phase. L5178Y-R cells showed only small changes in survival or initial yield of DNA and chromosome damage throughout the cell cycle. Because survival and initial damage in sensitive and resistant cells irradiated in G2 phase correlated, the difference in radiosensitivity between L5178Y-S and L5178Y-R cells might be determined by initial damage in G2 phase only.  相似文献   

9.
2 Strains of murine lymphoma L5178Y cells that varied from the point of view of sensitivity to UV irradiation (mean lethal doses: 3.6 and 8.5 J/m2 for L5178Y-R and L5178Y-S cells, respectively) also differed with respect to sensitization by caffeine. L5178Y-S cells were sensitized to UV irradiation by 0.75 mM caffeine, whereas in the same conditions L5178Y-R cells were not sensitized. Sedimentation analysis of the newly synthesized DNA indicated UV-induced gap formation in L5178Y-S cells only. The subsequent gap filling was inhibited by caffeine. Exposure to UV irradiation induced no gaps in L5178Y-R cells. However, when caffeine was added immediately after irradiation, DNA with reduced molecular weight was found in irradiated cells of both strains after a 2-h chase. On the other hand, caffeine inhibited elongation of undamaged DNA strands in neither of the 2 cell strains.  相似文献   

10.
Two highly conserved double-strand break (DSB) repair pathways, homologous recombination (HR) and nonhomologous end joining (NHEJ), function in all eukaryotes. How a cell chooses which pathway to utilize is an area of active research and debate. During NHEJ, the DNA-dependent protein kinase (DNA-PK) functions as a "gatekeeper" regulating DNA end access. Here, we provide evidence that DNA-PK regulates DNA end access via its own autophosphorylation. We demonstrated previously that autophosphorylation within a major cluster of sites likely mediates a conformational change that is critical for DNA end processing. Furthermore, blocking autophosphorylation at these sites inhibits a cell's ability to utilize the other major double-strand break repair pathway, HR. Here, we define a second major cluster of DNA-PK catalytic subunit autophosphorylation sites. Whereas blocking phosphorylation at the first cluster inhibits both end processing and HR, blocking phosphorylation at the second cluster enhances both. We conclude that separate DNA-PK autophosphorylation events may function reciprocally by not only regulating DNA end processing but also affecting DSB repair pathway choice.  相似文献   

11.
The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.  相似文献   

12.
Mouse lymphoma L5178 Y-S and Y-R cells differing in radiosensitivity by 1.5 times were treated with benzamide, an inhibitor of poly(ADP-ribosylation), for 24 h before and 18 h after X-irradiation, and incubated after irradiation at 25 degrees C and 37 degrees C. Clonogenic capacity of LY-S cells incubated at 25 degrees C exceeded that of the same cells incubated at 37 degrees C; the clonogenic capacity of LY-R cells did not vary with the postirradiation incubation temperature. Benzamide increased equally the radiosensitivity of LY-R cells incubated at both temperatures, whereas that of LY-S cells was only increased at 37 degrees C. Repair of potentially lethal damages to LY-S cells incubated at 25 degrees C was independent of the effectiveness of poly(ADP-ribosylation).  相似文献   

13.
Heating L5178Y cells for 15 min at 43 degrees C caused a decrease in [3H]thymidine incorporation, which could be reversed by post-treatment with 0.75 mM caffeine in an L5178Y-S (radiation-sensitive, heat-resistant) but not in an L5178Y-R (radiation-resistant, heat-sensitive) strain. The reversal was accompanied by a sparing effect of the treatment: survival of L5178Y-S cells increased by a factor of 1.5. The effect of combined (heat + caffeine) treatment of L5178Y-R cells was cumulative.  相似文献   

14.
The induction of mutants at the heterozygous tk locus by X radiation was found to be dose-rate dependent in L5178Y-R16 (LY-R16) cells, but very little dose-rate dependence was observed in the case of strain L5178Y-S1 (LY-S1), which is deficient in the repair of DNA double-strand breaks. Induction of mutants by X radiation at the hemizygous hprt locus was dose-rate independent for both strains. These results are in agreement with the hypothesis that the majority of X-radiation-induced TK-/- mutants harbor multilocus deletions caused by the interaction of damaged DNA sites. Repair of DNA lesions during low-dose-rate X irradiation would be expected to reduce the probability of lesion interaction. The results suggest that in contrast to the TK-/- mutants, the majority of mutations at the hprt locus in these strains of L5178Y cells are caused by single lesions subject to dose-rate-independent repair. The vast majority of the TK-/- mutants of strain LY-R16 showed loss of the entire active tk allele, whether the mutants arose spontaneously or were induced by high-dose-rate or low-dose-rate X irradiation. The proportion of TK-/- mutants with multilocus deletions (in which the products of both the tk gene and the closely linked gk gene were inactivated) was higher in the repair-deficient strain LY-S1 than in strain LY-R16. However, even though the mutant frequency decreased with dose rate, the proportion of mutants showing inactivation of both the tk and gk genes increased with a decrease in dose rate. The reason for these apparently conflicting results concerning the effect of DNA repair on the induction of extended lesions is under investigation.  相似文献   

15.
Two strains of L5178Y murine lymphoma, inversely cross-sensitive to X-rays and UV light, were shown previously to respond to treatment with an antitumour platinum complex, cis-dichlorobis(cyclopentylamine)-platinum(II) (cis-PAD), in a similar manner as to UV. Enhancement of chromosomal damage and potentiation of lethal effect of cis-PAD by 0.75 mM caffeine were found in cis-PAD and UV light-resistant L5178Y-S strain but not in cis-PAD and UV light-sensitive L5178Y-R strain. These results suggest that the extreme sensitivity of L5178Y-R strain to cis-PAD and UV light is caused to some extent by deficiency in a caffeine-sensitive post-replication repair system.  相似文献   

16.
Two strains of L5178Y mouse lymphoma cells, L5178Y-R (LY-R) and L5178Y-S (LY-S), differ markedly in their sensitivity to 254 nm UV radiation (D0 = 0.7 and 5.5 J/m2; n = 6.0 and 2.0 for LY-R and LY-S cells, respctively). In this study, the frequency o hypoxanthine-guanine-phosporibosyl-transferase-deficient mutants was determined, using 6-thioguanine (TG) as a selective agent, in populations of LY-R and LY-S cells exposed to various fluences of UV radiation. The spontaneous mutation frequency for LY-R cells was (3.7 ± 0.6) × 10?5 TGr mutants per viable cell, and the UV induction rate was (2.2 ± 0.8) × 10?4 TGr mutants per viable cell, per J/m2. Both spontaneous and induced mutantion frequencies were much lower for LY-S cells. The sopntaneous mutation frequency for these cells were too low to make its measurement practicable ( < 0.0013 × 10?5 TGr mutants per viable cell). Mutation induction rate was (4.2 ± 2.2) × 10?7 TGr mutants per viable cell, per J/m2. These differences in mutability do not appear to be due to gene duplication in LY-S cells, or to selective growth disadvantage of LY-S-derived TG-resistant mutants. Possible mechanisms underlying the differences in mutability of LY-R and LY-S cells are considered.  相似文献   

17.
We have constructed a series of polyomavirus-based shuttle vectors for analyzing mechanisms of mutagenesis in rodent cell systems. These vectors contain the supF suppressor tRNA gene which serves as the mutagenesis target; the pBR327 replication functions and ampr gene for replication and selection in bacteria; and the polyomavirus genome which permits replication in rodent cells. The polyoma genomes used in these vectors vary in their enhancer regions, causing varying efficiencies of replication in different types of rodent cells. One of the vectors (pPySLPT-2) which replicates particularly well in several different rodent cell types (i.e., Chinese hamster ovary, mouse hepatoma and mouse lymphoma) was used to compare mutation induction by UV radiation in UV repair-deficient mouse lymphoma L5178Y-R cells with mutagenesis in the related UV repair-proficient line, L5178Y-S. In both cell types, UV-induced mutants could be recovered at frequencies up to 50-fold higher than that of the spontaneous background. At a given UV fluence the L5178Y-R cells were more highly mutable than the L5178Y-S cells. Our results indicate that these new polyomavirus-based vectors should be useful for analysis of the molecular mechanisms of mutation induction in rodent cell systems, and in particular should allow detailed analysis of mutagenesis in the well characterized rodent somatic cell mutants.  相似文献   

18.
DNA-dependent protein kinase (DNA-PK) orchestrates DNA repair by regulating access to breaks through autophosphorylations within two clusters of sites (ABCDE and PQR). Blocking ABCDE phosphorylation (by alanine mutation) imparts a dominant negative effect, rendering cells hypersensitive to agents that cause DNA double-strand breaks. Here, a mutational approach is used to address the mechanistic basis of this dominant negative effect. Blocking ABCDE phosphorylation hypersensitizes cells to most types of DNA damage (base damage, cross-links, breaks, and damage induced by replication stress), suggesting that DNA-PK binds DNA ends that result from many DNA lesions and that blocking ABCDE phosphorylation sequesters these DNA ends from other repair pathways. This dominant negative effect requires DNA-PK''s catalytic activity, as well as phosphorylation of multiple (non-ABCDE) DNA-PK catalytic subunit (DNA-PKcs) sites. PSIPRED analysis indicates that the ABCDE sites are located in the only contiguous extended region of this huge protein that is predicted to be disordered, suggesting a regulatory role(s) and perhaps explaining the large impact ABCDE phosphorylation has on the enzyme''s function. Moreover, additional sites in this disordered region contribute to the ABCDE cluster. These data, coupled with recent structural data, suggest a model whereby early phosphorylations promote initiation of nonhomologous end joining (NHEJ), whereas ABCDE phosphorylations, potentially located in a “hinge” region between the two domains, lead to regulated conformational changes that initially promote NHEJ and eventually disengage NHEJ.  相似文献   

19.
DNA supercoiling ability was assayed following irradiation in two cell lines of differing radiosensitivity, L5178Y-S (LY-S) and L5178Y-R (LY-R). Cells treated with NaCl and Triton X-100 were exposed to increasing concentrations of the fluorescent, DNA-intercalating dye, propidium iodide (PI), and the diameter of the resulting fluorescent halo of DNA was measured. As the PI concentration was increased from 0.5 to 5 micrograms/ml, halo diameter increased from 20-25 to 45-55 microns due to the unwinding of the DNA supercoils. This process was similar for both cell lines under all conditions studied. As the PI concentration was increased to 50 micrograms/ml, the halo rewound to a diameter of 25-30 microns in unirradiated cells from both lines. However, following exposure to 3-12 Gy of 137Cs gamma rays, the ability of the DNA to be rewound was inhibited in a dose-dependent manner. Rewinding inhibition was greater in LY-S cells than in LY-R cells. Since the induction of DNA damage (e.g., single-strand DNA breaks) appears to be the same for both cell lines, this result implies that a similar extent of damage results in a greater loss of topological constraints on the DNA loops in LY-S. Such a change might be related to the protein composition of the nucleoid cores. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that nucleoids from LY-S cells were missing a 55-kDa protein present in LY-R.  相似文献   

20.
The DNA-dependent protein kinase (DNA-PK) plays an essential role in nonhomologous DNA end joining (NHEJ) by initially recognizing and binding to DNA breaks. We have shown that in vitro, purified DNA-PK undergoes autophosphorylation, resulting in loss of activity and disassembly of the kinase complex. Thus, we have suggested that autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) may be critical for subsequent steps in DNA repair. Recently, we defined seven autophosphorylation sites within DNA-PKcs. Six of these are tightly clustered within 38 residues of the 4,127-residue protein. Here, we show that while phosphorylation at any single site within the major cluster is not critical for DNA-PK's function in vivo, mutation of several sites abolishes the ability of DNA-PK to function in NHEJ. This is not due to general defects in DNA-PK activity, as studies of the mutant protein indicate that its kinase activity and ability to form a complex with DNA-bound Ku remain largely unchanged. However, analysis of rare coding joints and ends demonstrates that nucleolytic end processing is dramatically reduced in joints mediated by the mutant DNA-PKcs. We therefore suggest that autophosphorylation within the major cluster mediates a conformational change in the DNA-PK complex that is critical for DNA end processing. However, autophosphorylation at these sites may not be sufficient for kinase disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号