首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
植物乙酰辅酶A羧化酶的分子生物学与基因工程   总被引:16,自引:0,他引:16  
植物中的乙酰辅酶A羧化酶(acetylCoAcarboxylase,ACCase)分两种类型:原核类型的ACCase位于质体中,是脂肪酸合成途径中的关键酶;真核类型的ACCase位于胞质溶胶中,催化形成的产物主要用于长链脂肪酸的合成以及类黄酮等次生代谢产物的合成。但禾本科植物的质体和胞质溶胶中的ACCase都属于真核类型,其中质体中的是环己烯酮类和芳氧苯氧丙酸类等除草剂作用的靶蛋白。文中主要综述了植物中ACCase的生理功能、分子生物学特征及其对两类除草剂的敏感性,并对其基因工程作了展望。  相似文献   

3.
The mechanisms for de novo protein folding differ significantly between bacteria and eukaryotes, as evidenced by the often observed poor yields of native eukaryotic proteins upon recombinant production in bacterial systems. Polypeptide synthesis rates are faster in bacteria than in eukaryotes, but the effects of general variations in translation rates on protein folding efficiency have remained largely unexplored. By employing Escherichia coli cells with mutant ribosomes whose translation speed can be modulated, we show here that reducing polypeptide elongation rates leads to enhanced folding of diverse proteins of eukaryotic origin. These results suggest that in eukaryotes, protein folding necessitates slow translation rates. In contrast, folding in bacteria appears to be uncoupled from protein synthesis, explaining our findings that a generalized reduction in translation speed does not adversely impact the folding of the endogenous bacterial proteome. Utilization of this strategy has allowed the production of a native eukaryotic multidomain protein that has been previously unattainable in bacterial systems and may constitute a general alternative to the production of aggregation-prone recombinant proteins.  相似文献   

4.
5.
cDNA as well as amino acid sequencing has revealed the complete primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. A comparison with the published sequences of bacterial EF-Tu, mitochondrial EF-Tu and chloroplastic EF-Tu shows that distinct areas of these polypeptide chains are conserved in evolution. The evolutionary distance between prokaryotic and eukaryotic types of EF-Tu is larger than among bacterial and organellar EF- Tus . A number of regions present in both EF-Tu and EF-G from Escherichia coli are also found in EF-1 alpha from Artemia.  相似文献   

6.
In the course of the study of the biosynthesis of the fatty acid eicosapentaenoic acid (EPA) in the microalga Porphyridium cruentum, cells were pulse-labeled with various radiolabeled fatty acid precursors. Our data show that the major end products of the biosynthesis are EPA-containing galactolipids of a eukaryotic and prokaryotic nature. The prokaryotic molecular species contain EPA and arachidonic acid at the sn-1 position and C16 fatty acids, mainly 16:0, at the sn-2 positions, whereas in the eukaryotic species both positions are occupied by EPA or arachidonic acid. However, we suggest that both the eukaryotic and prokaryotic molecular species are formed in two pathways, [omega]6 and [omega]3, which involve cytoplasmic and chloroplastic lipids. In the [omega]6 pathway, cytoplasmic 18:2-phosphatidylcholine (PC) is converted to 20:4[omega]6-PC by a sequence that includes a [delta]6 desaturase, an elongation step, and a [delta]5 desaturase. In the minor [omega]3 pathway, 18:2-PC is presumably desaturated to 18:3[omega]3, which is sequentially converted by the enzymatic sequence of the [omega]6 pathway to 20:5[omega]3-PC. The products of both pathways are exported, as their diacylglycerol moieties, to the chloroplast to be galactosylated into their respective monogalactosyldiacylglycerol molecular species. The 20:4[omega]6 in both eukaryotic and prokaryotic monogalactosyldiacylglycerol can be further desaturated to EPA by a chloroplastic [delta]17 ([omega]3) desaturase.  相似文献   

7.
The 3 beta-hydroxysteroid dehydrogenase of Pseudomonas testosteroni commercially available was purified by an FPLC step and submitted to sequence determination by peptide analysis. The structure obtained reveals a 253-residue polypeptide chain, with an N-terminal, free alpha-amino group, and a low cysteine content. Comparisons with other hydroxysteroid dehydrogenases recently characterized reveal distant similarities with prokaryotic and, to some extent, also eukaryotic forms of separate specificities. Residue identities with a Streptomyces 20 beta-hydroxysteroid dehydrogenase are 35% and distributed over the entire molecule, whereas residue identities with the mammalian 17 beta-hydroxysteroid dehydrogenase only constitute 20%, and are essentially limited to the N-terminal and central parts, Nevertheless, all these enzymes exhibit a conserved tyrosine residue (position 151 in the present enzyme) noted as possibly having a functional role in some members of this protein family. Combined, the results establish the prokaryotic 3 beta-hydroxysteroid dehydrogenase as belonging to the family of short-chain alcohol dehydrogenases, reveal that the hydroxysteroid dehydrogenases are no more closely related than dehydrogenases with other enzyme activities within the family (e.g. glucose, ribitol, hydroxyprostaglandin dehydrogenases), show several of the mammalian hydroxysteroid dehydrogenases to have subunits of longer size with different patterns of similarity than those of the prokaryotic family members characterized, and define important segments of the coenzyme-binding region for this enzyme group.  相似文献   

8.
The DJ-1 gene is extensively studied because of its involvement in familial Parkinson disease. DJ-1 belongs to a complex superfamily of genes that includes both prokaryotic and eukaryotic representatives. We determine that many prokaryotic groups, such as proteobacteria, cyanobacteria, spirochaetes, firmicutes, or fusobacteria, have genes, often incorrectly called "Thij," that are very close relatives of DJ-1, to the point that they cannot be clearly separated from the eukaryotic DJ-1 genes by phylogenetic analyses of their sequences. In addition, and contrary to a previous study that suggested that DJ-1 genes were animal specific, we show that DJ-1 genes are found in at least 5 of the 6 main eukaryotic groups: opisthokonta (both animals and fungi), plantae, chromalveolata, excavata, and amoebozoa. Our results thus provide strong evidence for DJ-1 genes originating before the origin of eukaryotes. Interestingly, we found that some fungal species, among them the model yeast Schizosaccharomyces pombe, have DJ-1-like genes, most likely orthologous to the animal genes. This finding opens new ways for the analysis of the functions of this group of genes.  相似文献   

9.
Ger MF  Rendon G  Tilson JL  Jakobsson E 《PloS one》2010,5(10):e12827
Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their eukaryotic counterparts. In this study we identify likely prokaryotic functional counterparts of eukaryotic glutamate receptor channels by comprehensive analysis of the prokaryotic sequences in the context of known functional domains present in the eukaryotic members of this family. In particular, we searched the nonredundant protein database for all proteins containing the following motif: the two sections of the extracellular glutamate binding domain flanking two transmembrane helices. We discovered 100 prokaryotic sequences containing this motif, with a wide variety of functional annotations. Two groups within this family have the same topology as eukaryotic glutamate receptor channels. Group 1 has a potassium-like selectivity filter. Group 2 is most closely related to eukaryotic glutamate receptor channels. We present analysis of the functional domain architecture for the group of 100, a putative phylogenetic tree, comparison of the protein phylogeny with the corresponding species phylogeny, consideration of the distribution of these proteins among classes of prokaryotes, and orthologous relationships between prokaryotic and human glutamate receptor channels. We introduce a construct called the Evolutionary Domain Network, which represents a putative pathway of domain rearrangements underlying the domain composition of present channels. We believe that scientists interested in ion channels in general, and ligand-gated ion channels in particular, will be interested in this work. The work should also be of interest to bioinformatics researchers who are interested in the use of functional domain-based analysis in evolutionary and functional discovery.  相似文献   

10.
Histones have been identified recently in many prokaryotes. These histones, unlike their eukaryotic homologs, are of a single uniform type that is thought to resemble the archetypal ancestor of the eukaryotic histone family. In this paper we report the finding, the cloning and the phylogenetic analysis of the sequence of a prokaryotic histone from the hyperthermophile Methanopyrus kandleri . Unlike previously described prokaryotic histones, the Methanopyrus sequence has a novel structure consisting of two tandemly repeated histone fold motifs in a single polypeptide. Sequence analyses indicate that the N-terminal repeat is most closely related to eukaryotic H2A and H4 histones, whereas the C-terminal repeat resembles that found in prokaryotic histones. These results imply an early divergence within the histone gene family prior to the emergence of eukaryotes and may represent an evolutionary step leading to eukaryotic histones.  相似文献   

11.
12.
The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.  相似文献   

13.
The present study examines 783 human-mouse orthologous gene pairs for their pattern of sequence evolution, contrasting mammalia, eukaryota, coelomata, and bilateria specific human intronless genes. Such comparisons may be of use in understanding the general evolution of human genome. Evolutionary rate analyses indicate that mammalia specific human intronless genes are evolving faster as compared to other intronless genes specific to eukaryotic lineage, indicating towards their rapid evolution. The observations indicates that the genes conserved in eukaryota, coelomata, and bilateria, that is, proteins that arose earlier in evolution as compared to mammalia specific genes evolve slowly and are subjected to negative selection. The cause underlying rate variations was also explored. Although mutational bias might slightly fasten the nonsynonymous rates in mammalia specific genes, it is unlikely to be major cause of rate difference between the various categories. Furthermore, rate of divergence of mammalia specific intronless genes has been related to functional classification using the protein family annotation. Protein function was found in some cases to have larger impact on the rate of evolution of genes. Also, the codon usage pattern of mammalia specific intronless genes do not seem to differ much from those of other intronless genes conserved solely in eukaryotic lineage.  相似文献   

14.
In this paper, we report the identification of genes from pine (PpAAT), Arabidopsis (AtAAT) and rice (OsAAT) encoding a novel class of aspartate aminotransferase (AAT, EC 2.6.1.1) in plants. The enzyme is unrelated to other eukaryotic AATs from plants and animals but similar to bacterial enzymes. Phylogenetic analysis indicates that this prokaryotic-type AAT is closely related to cyanobacterial enzymes, suggesting it might have an endosymbiotic origin. Interestingly, most of the essential residues involved in the interaction with the substrate and the attachment of pyridoxal phosphate cofactor in the active site of the enzyme were conserved in the deduced polypeptide. The polypeptide is processed in planta to a mature subunit of 45 kDa that is immunologically distinct from the cytosolic, mitochondrial and chloroplastic isoforms of AAT previously characterized in plants. Functional expression of PpAAT sequences in Escherichia coli showed that the processed precursor is assembled into a catalytically active homodimeric holoenzyme that is strictly specific for aspartate. These atypical genes are predominantly expressed in green tissues of pine, Arabidopsis and rice, suggesting a key role of this AAT in nitrogen metabolism associated with photosynthetic activity. Moreover, immunological analyses revealed that the plant prokaryotic-type AAT is a nuclear-encoded chloroplast protein. This implies that two plastidic AAT co-exist in plants: a eukaryotic type previously characterized and the prokaryotic type described here. The respective roles of these two enzymes in plant amino acid metabolism are discussed.  相似文献   

15.
Experiments were designed to examine the early events in the initiation of glutamate deamination in kidney. Perfused kidneys from methionine sulfoximine-treated rats formed ammonia from [15N]glutamate via the purine nucleotide cycle. The turnover of the 6-amino group of adenine nucleotides to yield ammonia occurred at the rate of 0.30 mumol/g of kidney/min. This rate is 3-4 times larger than in liver and is in agreement with published rates of the purine nucleotide cycle in kidney. The addition of 0.1 mM fluorocitrate to glutamate perfusions stimulated ammonia formation 3 1/2-fold. The turnover of the 6-amino group of adenine nucleotides increased during the first 5 min after adding fluorocitrate to form ammonia predominately from tissue glutamate and aspartate. This turnover correlates with a 3 1/2-fold increase in kidney tissue IMP levels. As the ATP/ADP ratio fell the purine nucleotide cycle was inhibited and glutamate dehydrogenase was stimulated to form ammonia stoichiometric with glutamate taken up from the perfusate. Ammonia formation via glutamate dehydrogenase occurred at a rate of 1.0 mumol/g of kidney/min. Fluorocitrate completely blocked ammonia formation from aspartate in perfusions. The perfused kidney formed ammonia from aspartate via the purine nucleotide cycle at a rate of 1.0 mumol/g of kidney/min. The results indicate a discrete role for aspartate in renal metabolism. Ammonia formation via the purine nucleotide cycle can occur at significant rates and equal to the rate of ammonia formation from glutamate via glutamate dehydrogenase.  相似文献   

16.
Escherichia coli malate dehydrogenase has been isolated in homogeneous form by a procedure employing chromatography on DEAE-cellulose, 5'-AMP-Sepharose, and Sephacryl-200. It is composed of two identical polypeptide chains each of Mr = 32 500. Like porcine mitochondrial malate dehydrogenase, it is devoid of tryptophan, but otherwise it is not particularly more similar in composition to one of the eukaryotic isozymes than to the other. However, amino-terminal sequence analysis of the first 36 residues shows remarkable similarity of the bacterial and mitochondrial enzymes (69% identical residues) in contrast to the cytoplasmic form (27%). The two porcine heart enzymes are identical in 24t% of the positions compared. These results clearly establish that all three forms of malate dehydrogenase have evolved from a common precursor and that the prokaryotic and mitochondrial forms have retained sequences that are much closer to the ancestral one than the cytoplasmic enzyme. These findings appear to further substantiate the endosymbiotic hypothesis for the origin of the mitochondrion.  相似文献   

17.
Elongation factor EF-1 from Guerin epithelioma was separated into two subunit forms EF-1A and EF-1B by chromatography in the presence of 25% glycerol, successively on CM-Sephadex and DEAE-Sephadex. It was shown that EF-1A is a thermolabile, single polypeptide which catalyses the binding of aminoacyl-tRNA to ribosomes, similarly as eukaryotic EF-1 alpha or prokaryotic EF-Tu. EF-1B was characterized as a complex composed of at least two polypeptides. One of them is EF-1A, the other EF-1C, which stimulates EF-1A activity and protects this elongation factor from thermal inactivation.  相似文献   

18.
The activity of 6-phosphogluconate dehydrogenase, aspartate kinase and phosphoenolpyruvate carboxylase has been studied at different dilution rates in aerobic continuous culture of Corynebacterium glutamicum. 6-Phosphogluconate dehydrogenase and aspartate kinase reached their maximum values at the lower dilution rates (0.02–0.06 h–1), when L-lysine was produced. The phosphoenolpyruvate carboxylase activity seemed to be independent of metabolite synthesis. The production of L-lysine was also studied in non-growing cells in batch cultures. In these conditions, statistical analysis revealed significant differences in L-lysine titres when glucose or gluconic acid were used as carbon sources. Higher L-lysine concentration obtained with gluconic acid was found to be associated with a high 6-phosphogluconate dehydrogenase activity.  相似文献   

19.
The dimorphic fungus Mucor racemosus was grown at rates between 0.043 and 0.434 doubling/h while maintained as yeasts or at rates between 0.21 and 0.50 doubling/h while maintained as hyphae by altering the composition of the growth medium or the gaseous environment of the cells. Yeasts at the higher growth rates contained many more ribosomes than did yeasts at the lower growth rates. They also had a higher percentage of ribosomes active in protein synthesis and a faster rate of polypeptide-chain elongation than did the slower-growing cells. Hyphal cells at faster growth rates also contained many more ribosomes and showed a faster rate of polypeptide-chain elongation than did slower-growing cells. However, the faster-growing cells had a substantially lower proportion of ribosomes active in protein synthesis than did the slower-growing hyphae. Pulse-chase experiments failed to provide any evidence of protein turnover, which might otherwise invalidate the values calculated for the peptide-chain elongation rates.  相似文献   

20.
The most common type of genetic relationship between cytosolic and mitochondrial isoenzymes will probably be found to be divergent evolution from a common ancestral form. This is firmly established for the aspartate aminotransferases and less directly so in other cases. The two isoenzymes of aspartate aminotransferase have evolved at roughly equal rates at the level of total amino acid sequence but certain limited surface regions of the mitochondrial form have been much more highly conserved than corresponding regions in the cytosolic protein; these regions probably play a role in topogenesis of the mitochondrial isoenzyme. It is of interest that nearly all mitochondrial proteins are initially synthesised as precursors of molecular weight greater than the mature forms. In the case of aspartate aminotransferase, and possibly of other such isoenzymes, the N-terminus of the mature protein is nearly coincident with that of the cytosolic isoenzyme. Hence during evolution either the gene for the mitochondrial isoenzyme has gained an extra coding region for this N-terminal extension or, less likely, the structural gene for the cytosolic form has suffered a sizeable terminal deletion. Cytosolic and mitochondrial superoxide dismutases have not shared a common ancestral form as shown by the fact that their primary structures are completely unrelated. On the other hand, the mitochondrial and prokaryotic enzymes are clearly related. There is now, however, evidence to suggest that some prokaryotes possess a copper/zinc enzyme related to the eukaryotic cytosolic form. Hence the possibility arises that primitive prokaryotes possessed both proteins. The copper/zinc superoxide dismutase has been retained in the cytosol of eukaryotic cells and a few bacterial species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号