首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA polymerase holoenzyme of bacteriophage T4 contains, besides the DNA polymerase itself (the gene 43 protein), a complex of the protein products of T4 genes 44 and 62 (a DNA-dependent ATPase) and of gene 45. Together, the 44/62 and 45 proteins form an ATP-dependent "sliding clamp" that holds a moving DNA polymerase molecule at the 3' terminus of a growing DNA chain. We have used a unique DNA fragment that forms a short hairpin helix with a single-stranded 5' tail (a "primer-template junction") to map the binding sites for these polymerase accessory proteins by DNA footprinting techniques. In the absence of the DNA polymerase, the accessory proteins protect from DNase I cleavage 19-20 nucleotides just behind the 3' end of the primer strand and 27-28 nucleotides on the complementary portion of the template strand. Detection of this DNA-protein complex requires the 44/62 and 45 proteins plus the nonhydrolyzable ATP analogue adenosine 5'-O-(thiotriphosphate). The complex is not detected in the presence of ATP. We suggest that ATP hydrolysis by the 44/62 protein normally activates the accessory proteins at a primer-template junction, permitting the DNA polymerase to bind and thus form the complete holoenzyme. However, when the polymerase is missing, as in these experiments, ATP hydrolysis is instead followed by a release (or loosening) of the accessory protein complex.  相似文献   

2.
We have used DNA footprinting techniques to analyze the interactions of five DNA replication proteins at a primer-template junction: the bacteriophage T4 DNA polymerase (the gene 43 protein), its three accessory proteins (the gene 44/62 and 45 proteins), and the gene 32 protein, which is the T4 helix-destabilizing (or single-stranded DNA-binding) protein. The 177-nucleotide-long DNA substrate consisted of a perfect 52-base pair hairpin helix with a protruding single-stranded 5' tail. As expected, the DNA polymerase binds near the 3' end of this molecule (at the primer-template junction) and protects the adjacent double-stranded region from cleavage. When the gene 32 protein binds to the single-stranded tail, it reduces the concentration of the DNA polymerase required to observe the polymerase footprint by 10-30-fold. Periodic ATP hydrolysis by the 44/62 protein is required to maintain the activity of the DNA polymerase holoenzyme (a complex of the 43, 44/62, and 45 proteins). Footprinting experiments demonstrate the formation of a weak complex between the DNA polymerase and the gene 45 protein, but there is no effect of the 44/62 protein or ATP on this enlarged footprint. We propose a model for holoenzyme function in which the complex of the three accessory proteins uses ATP hydrolysis to keep a moving polymerase tightly bound to the growing 3' end, providing a "clock" to measure polymerase stalling.  相似文献   

3.
Eukaryotic DNA polymerase delta and its accessory proteins are essential for SV40 DNA replication in vitro. A multi-subunit protein complex, replication factor C (RF-C), which is composed of subunits with apparent molecular weights of 140,000, 41,000, and 37,000, has primer/template binding and DNA-dependent ATPase activities. UV-cross-linking experiments demonstrated that the Mr = 140,000 subunit recognizes and binds to the primer-template DNA, whereas the Mr = 41,000 polypeptide binds ATP. Assembly of a replication complex at a primer-template junction has been studied in detail with synthetic, hairpin DNAs. Following glutaraldehyde fixation, a gel shift assay demonstrated that RF-C alone forms a weak binding complex with the hairpin DNA. Addition of ATP or its nonhydrolyzable analogue, ATP gamma S, increased specific binding to the DNA. Footprinting experiments revealed that RF-C recognizes the primer-template junction, covering 15 bases of the primer DNA from the 3'-end and 20 bases of the template DNA. Another replication factor, proliferating cell nuclear antigen (PCNA) binds to RF-C and the primer-template DNA forming a primer recognition complex and extends the protected region on the duplex DNA. This RF-C.PCNA complex has significant single-stranded DNA binding activity in addition to binding to a primer-template junction. However, addition of another replication factor, RF-A, completely blocked the nonspecific, single-stranded DNA binding by the RF-C.PCNA complex. RF-A therefore functions as a specificity factor for primer recognition. In the absence of RF-C, DNA polymerase delta (pol delta) and PCNA form a complex at the primer-template junction, protecting exactly the same site as the primer recognition complex. Addition of RF-C to this complex produced a higher order complex which is unstable unless its formation is coupled with translocation of pol delta. These results suggest that the sequential binding of RF-C, PCNA, and pol delta to a primer-template junction might directly account for the initiation of leading strand DNA synthesis at a replication origin. We demonstrate this directly in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1961-1968).  相似文献   

4.
T L Capson  S J Benkovic  N G Nossal 《Cell》1991,65(2):249-258
T4 DNA polymerase, the 44/62 and 45 polymerase accessory proteins, and 32 single-stranded DNA-binding protein catalyze ATP-dependent DNA synthesis. Using DNA primers with cross-linkable residues at specific positions, we obtained structural data that reveal how these proteins assemble on the primer-template. With the nonhydrolyzable ATP analog ATP gamma S, assembly of the 44/62 and 45 proteins on the primer requires 32 protein but not polymerase. ATP hydrolysis changes the position and intensity of cross-linking to each of the accessory proteins and allows cross-linking of polymerase. Our data indicate that the initial binding of the three accessory proteins and ATP to a 32 protein-covered primer-template is followed by ATP hydrolysis, binding of polymerase, and movement of the accessory proteins to yield a complex capable of processive DNA synthesis.  相似文献   

5.
Gene 4 protein and DNA polymerase of bacteriophage T7 catalyze RNA-primed DNA synthesis on single-stranded DNA templates. T7 DNA polymerase exhibits an affinity for both gene 4 protein and single-stranded DNA, and gene 4 protein binds stably to single-stranded DNA in the presence of dTTP (Nakai, H. and Richardson, C. C. (1986) J. Biol. Chem. 261, 15208-15216). Gene 4 protein-T7 DNA polymerase-template complexes may be formed in both the presence and absence of nucleoside 5'-triphosphates. The protein-template complexes may be isolated free of unbound proteins and nucleotides by gel filtration and will catalyze RNA-primed DNA synthesis in the presence of ATP, CTP, and the four deoxynucleoside 5'-triphosphates. RNA-primed DNA synthesis may be dissected into separate reactions for primer synthesis and DNA synthesis. Upon incubation of gene 4 protein with single-stranded DNA, ATP, and CTP, a primer-template complex is formed; it is likely that gene 4 protein mediates stable binding of the oligonucleotide to the template. The complex, purified free of unbound proteins and nucleotides, supports DNA synthesis upon addition of DNA polymerase and deoxynucleoside 5'-triphosphates. Association of primers with the template is increased by the presence of dTTP or DNA polymerase during primer synthesis. DNA synthesis supported by primer-template complexes initiates predominantly at gene 4 recognition sequences, indicating that primers are bound to the template at these sites.  相似文献   

6.
A purification procedure has been developed that resolves four chromatographically distinct DNA-dependent ATPase activities from calf thymus tissue. One of these activities has been purified to a nearly homogeneous protein, as judged by polyacrylamide gel electrophoresis. This protein has a specific activity of 18 mumol of ATP hydrolyzed per minute per milligram of protein and is active only in the presence of a DNA effector. The DNA-dependent ATPase activity is greatest in the presence of DNA containing a 3'-hydroxyl primer-template junction with a segment of adjacent single strand, i.e., a DNA polymerase substrate. Primer-template effectors that have had the 3'-hydroxyl group eliminated by the addition of a dideoxyribonucleotide are less active as cofactors for ATP hydrolysis than effectors which retain the 3'-hydroxyl group. Other DNAs can serve as cofactors, but with a reduced rate of ATP hydrolysis. DNA cofactors which are single stranded are much more effective at promoting ATPase activity than completely double-stranded cofactors, although the effectiveness of single-stranded DNA decreases as the length of the oligonucleotide decreases. An RNA/DNA hybrid does not promote ATPase activity. These data suggest that ATPase A may be involved in the recognition of primer-template junctions and the elongation phase of DNA synthesis.  相似文献   

7.
The bacteriophage T4 genome is believed to encode all of the proteins needed for the replication of its own DNA. Included among these proteins are the "polymerase accessory proteins", the products of T4 genes 44, 62 and 45. The first two of these genes specify the synthesis of the 44/62 protein complex, which is here shown to be a DNA-dependent ATPase, hydrolyzing either ATP or dATP to the corresponding nucleoside diphosphate and releasing inorganic phosphate. This nucleotide hydrolysis is greatly stimulated by addition of the gene 45 protein and by single-stranded DNA termini. A rapid micro DNA-cellulose assay is introduced and used to measure accessory protein binding to the complex of T4 gene 32 protein and single-stranded DNA. In the presence of ATP, the 44/62 protein binds to this complex but not to naked DNA, while the 45 protein requires both the 32 protein and the 44/62 protein for detectable binding.  相似文献   

8.
The organization and proper assembly of proteins to the primer-template junction during DNA replication is essential for accurate and processive DNA synthesis. DNA replication in RB69 (a T4-like bacteriophage) is similar to those of eukaryotes and archaea and has been a prototype for studies on DNA replication and assembly of the functional replisome. To examine protein-protein interactions at the DNA replication fork, we have established solution conditions for the formation of a discrete and homogeneous complex of RB69 DNA polymerase (gp43), primer-template DNA, and RB69 single-stranded DNA-binding protein (gp32) using equilibrium fluorescence and light scattering. We have characterized the interaction between DNA polymerase and single-stranded DNA-binding protein and measured a 60-fold increase in the overall affinity of RB69 single-stranded DNA-binding protein (SSB) for template strand DNA in the presence of DNA polymerase that is the result of specific protein-protein interactions. Our data further suggest that the cooperative binding of the RB69 DNA polymerase and SSB to the primer-template junction is a simple but functionally important means of regulatory assembly of replication proteins at the site of action. We have also shown that a functional domain of RB69 single-stranded DNA-binding protein suggested previously to be the site of RB69 DNA polymerase-SSB interactions is dispensable. The data from these studies have been used to model the RB69 DNA polymerase-SSB interaction at the primer-template junction.  相似文献   

9.
In this paper we examine the role of the DNA polymerase accessory proteins in modulating the processivity of DNA synthesis by the bacteriophage T4-coded five protein "holoenzyme" replication complex in vitro. Primed single-stranded DNA was used as a template for the DNA synthesis reactions, and buffer conditions were chosen to mimic in vivo salt concentrations. We find that the accessory proteins significantly increase the DNA-bound lifetime of the holoenzyme complex but that the maximum lifetime of the complex is still less than 10 s at 22 degrees C. The accessory proteins greatly enhance the processivity of the holoenzyme relative to that of the polymerase alone. ATP hydrolysis catalyzed by the accessory proteins complex is required to achieve this enhancement. We have investigated the temporal relationship between ATP hydrolysis by the accessory proteins and primer elongation by the holoenzyme and find that ATPase activity is required for initial assembly of the holoenzyme complex but not for elongation per se. Thus we conclude that the increased processivity displayed by the holoenzyme in moving through regions of template secondary structure reflects the high intrinsic processivity of the holoenzyme complex itself rather than a requirement for a concomitant ATPase-driven helicase activity during elongation. We have also measured the ATPase activity of the accessory proteins as a function of polymerase concentration and find that the rate of ATP hydrolysis catalyzed by this complex decreases significantly when the accessory proteins are assembled (with polymerase and gene 32 protein) into the five-protein holoenzyme and coupled to primer elongation. Based on these results we discuss mechanisms by which the ATPase activity of the polymerase accessory proteins might stimulate the overall processivity of the holoenzyme.  相似文献   

10.
Bacteriophage T7 gene 5 protein has been purified to apparent homogeneity from cells overexpressing its gene several hundred-fold. Gene 5 protein is a DNA polymerase with low processivity; it dissociates from the primer-template after catalyzing the incorporation of 1-50 nucleotides, depending on the salt concentration. Escherichia coli thioredoxin, a host protein that is tightly associated with the gene 5 protein in phage-infected cells, is not required for this activity. Thioredoxin acts as an accessory protein to bestow processivity on the polymerizing reaction; DNA synthesis catalyzed by the gene 5 protein-thioredoxin complex on a single-stranded DNA template can polymerize thousands of nucleotides without dissociation. Conditions that increase the stability of secondary structures in the template (i.e., low temperature or high ionic strength) decrease the processivity. E. coli single-stranded DNA-binding protein stimulates both the rate of elongation and the processivity of the gene 5 protein-thioredoxin complex.  相似文献   

11.
12.
Complexes formed between DNA polymerase and genomic DNA at the replication fork are key elements of the replication machinery. We used sedimentation velocity, fluorescence anisotropy, and surface plasmon resonance to measure the binding interactions between bacteriophage T4 DNA polymerase (gp43) and various model DNA constructs. These results provide quantitative insight into how this replication polymerase performs template-directed 5' --> 3' DNA synthesis and how this function is coordinated with the activities of the other proteins of the replication complex. We find that short (single- and double-stranded) DNA molecules bind a single gp43 polymerase in a nonspecific (overlap) binding mode with moderate affinity (Kd approximately 150 nm) and a binding site size of approximately 10 nucleotides for single-stranded DNA and approximately 13 bp for double-stranded DNA. In contrast, gp43 binds in a site-specific (nonoverlap) mode and significantly more tightly (Kd approximately 5 nm) to DNA constructs carrying a primer-template junction, with the polymerase covering approximately 5 nucleotides downstream and approximately 6-7 bp upstream of the 3'-primer terminus. The rate of this specific binding interaction is close to diffusion-controlled. The affinity of gp43 for the primer-template junction is modulated specifically by dNTP substrates, with the next "correct" dNTP strengthening the interaction and an incorrect dNTP weakening the observed binding. These results are discussed in terms of the individual steps of the polymerase-catalyzed single nucleotide addition cycle and the replication complex assembly process. We suggest that changes in the kinetics and thermodynamics of these steps by auxiliary replication proteins constitute a basic mechanism for protein coupling within the replication complex.  相似文献   

13.
Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of the two proteins. The polymerase activity of the covalently linked complex (gp5-S-S-trx) is similar to that of gp5/trx on poly(dA)/oligo(dT). However, gp5-S-S-trx has only one third the polymerase activity of gp5/trx on single-stranded M13 DNA. gp5-S-S-trx has difficulty polymerizing nucleotides through sites of secondary structure on M13 DNA and stalls at these sites, resulting in lower processivity. However, gp5-S-S-trx has an identical processivity and rate of elongation when E. coli single-stranded DNA-binding protein (SSB protein) is used to remove secondary structure from M13 DNA. Upon completing synthesis on a DNA template lacking secondary structure, both complexes recycle intact, without dissociation of the processivity factor, to initiate synthesis on a new DNA template. However, a complex stalled at secondary structure becomes unstable, and both subunits dissociate from each other as the polymerase prematurely releases from M13 DNA.  相似文献   

14.
Bacteriophage T4 gene 41 protein is one of the two phage proteins previously shown to be required for the synthesis of the pentaribonucleotide primers which initiate the synthesis of new chains in the T4 DNA replication system. We now show that a DNA helicase activity which can unwind short fragments annealed to complementary single-stranded DNA copurifies with the gene 41 priming protein. T4 gene 41 is essential for both the priming and helicase activities, since both are absent after infection by T4 phage with an amber mutation in gene 41. A complete gene 41 product is also required for two other activities previously found in purified preparations of the priming activity: a single-stranded DNA-dependent GTPase (ATPase) and an activity which stimulates strand displacement synthesis catalyzed by T4 DNA polymerase, the T4 gene 44/62 and 45 polymerase accessory proteins, and the T4 gene 32 helix-destabilizing protein (five-protein reaction). The 41 protein helicase requires a single-stranded DNA region adjoining the duplex region and begins unwinding at the 3' terminus of the fragment. There is a sigmoidal dependence on both nucleotide (rGTP, rATP) and protein concentration for this reaction. 41 Protein helicase activity is stimulated by our purest preparation of the T4 gene 61 priming protein, and by the T4 gene 44/62 and 45 polymerase accessory proteins. The direction of unwinding is consistent with the idea that 41 protein facilitates DNA synthesis on duplex templates by destabilizing the helix as it moves 5' to 3' on the displaced strand.  相似文献   

15.
The crystal structure of the DNA polymerase encoded by gene 5 of bacteriophage T7, in a complex with its processivity factor, Escherichia coli thioredoxin, a primer-template, and an incoming deoxynucleoside triphosphate reveals a putative hydrogen bond between the C-terminal residue, histidine 704 of gene 5 protein, and an oxygen atom on the penultimate phosphate diester of the primer strand. Elimination of this electrostatic interaction by replacing His(704) with alanine renders the phage nonviable, and no DNA synthesis is observed in vivo. Polymerase activity of the genetically altered enzyme on primed M13 DNA is only 12% of the wild-type enzyme, and its processivity is drastically reduced. Kinetic parameters for binding a primer-template (K(D)(app)), nucleotide binding (K(m)), and k(off) for dissociation of the altered polymerase from a primer-template are not significantly different from that of wild-type T7 DNA polymerase. However, the decrease in polymerase activity is concomitant with increased hydrolytic activity, judging from the turnover of nucleoside triphosphate into the corresponding nucleoside monophosphate (percentage of turnover, 65%) during DNA synthesis. Biochemical data along with structural observations imply that the terminal amino acid residue of T7 DNA polymerase plays a critical role in partitioning DNA between the polymerase and exonuclease sites.  相似文献   

16.
17.
The proteolytic removal of about 60 amino acids from the COOH terminus of the bacteriophage T4 helix-destabilizing protein (gene 32 protein) produces 32*I, a 27,000-dalton fragment which still binds tightly and cooperatively to single-stranded DNA. The substitution of 32*I protein for intact 32 protein in the seven-protein T4 replication complex results in dramatic changes in some of the reactions catalyzed by this in vitro DNA replication system, while leaving others largely unperturbed. 1. Like intact 32 protein, the 32*I protein promotes DNA synthesis by the DNA polymerase when the T4 polymerase accessory proteins (gene 44/62 and 45 proteins) are also present. The host helix-destabilizing protein (Escherichia coli ssb protein) cannot replace the 32I protein for this synthesis. 2. Unlike intact 32 protein, 32*I protein strongly inhibits DNA synthesis catalyzed by the T4 DNA polymerase alone on a primed single-stranded DNA template. 3. Unlike intact 32 protein, the 32*I protein strongly inhibits RNA primer synthesis catalyzed by the T4 gene 41 and 61 proteins and also reduces the efficiency of RNA primer utilization. As a result, de novo DNA chain starts are blocked completely in the complete T4 replication system, and no lagging strand DNA synthesis occurs. 4. The 32*I protein does not bind to either the T4 DNA polymerase or to the T4 gene 61 protein in the absence of DNA; these associations (detected with intact 32 protein) would therefore appear to be essential for the normal control of 32 protein activity, and to account at least in part for observations 2 and 3, above. We propose that the COOH-terminal domain of intact 32 protein functions to guide its interactions with the T4 DNA polymerase and the T4 gene 61 RNA-priming protein. When this domain is removed, as in 32*I protein, the helix destabilization induced by the protein is controlled inadequately, so that polymerizing enzymes tend to be displaced from the growing 3'-OH end of a polynucleotide chain and are thereby inhibited. Eukaryotic helix-destabilizing proteins may also have similar functional domains essential for the control of their activities.  相似文献   

18.
Single-pulse (approximately 8 ns) ultraviolet laser excitation of protein-nucleic acid complexes can result in efficient and rapid covalent cross-linking of proteins to nucleic acids. The reaction produces no nucleic acid-nucleic acid or protein-protein cross-links, and no nucleic acid degradation. The efficiency of cross-linking is dependent on the wavelength of the exciting radiation, on the nucleotide composition of the nucleic acid, and on the total photon flux. The yield of cross-links/laser pulse is largest between 245 and 280 nm; cross-links are obtained with far UV photons (200-240 nm) as well, but in this range appreciable protein degradation is also observed. The method has been calibrated using the phage T4-coded gene 32 (single-stranded DNA-binding) protein interaction with oligonucleotides, for which binding constants have been measured previously by standard physical chemical methods (Kowalczykowski, S. C., Lonberg, N., Newport, J. W., and von Hippel, P. H. (1981) J. Mol. Biol. 145, 75-104). Photoactivation occurs primarily through the nucleotide residues of DNA and RNA at excitation wavelengths greater than 245 nm, with reaction through thymidine being greatly favored. The nucleotide residues may be ranked in order of decreasing photoreactivity as: dT much greater than dC greater than rU greater than rC, dA, dG. Cross-linking appears to be a single-photon process and occurs through single nucleotide (dT) residues; pyrimidine dimer formation is not involved. Preliminary studies of the individual proteins of the five-protein T4 DNA replication complex show that gene 43 protein (polymerase), gene 32 protein, and gene 44 and 45 (polymerase accessory) proteins all make contact with DNA, and can be cross-linked to it, whereas gene 62 (polymerase accessory) protein cannot. A survey of other nucleic acid-binding proteins has shown that E. coli RNA polymerase, DNA polymerase I, and rho protein can all be cross-linked to various nucleic acids by the laser technique. The potential uses of this procedure in probing protein-nucleic acid interactions are discussed.  相似文献   

19.
An in vitro replication system reconstituted from six purified T4 bacteriophage proteins, each of which is essential for T4 DNA replication in vivo, requires ATP. Because of the complexity of the complete system, we examine in this report the involvement of ATP in two subsystems of the overall DNA synthesis reaction. One subsystem consists of the T4 DNA polymerase (gene 43 protein) and its "accessory proteins," the gene 44/62 and 45 products. An even simpler subsystem consists of the gene 44/62 and 45 proteins alone, which together have a DNA-dependent ATPase activity. The combination of the 44/62 and 45 proteins hydrolyze ATP to ADP and inorganic phosphate in the presence of DNA. These essential accessory proteins have been previously shown to increase T4 DNA polymerase activity on primed, single-stranded DNA templates. In this report we use nucleotide analogues to demonstrate that this polymerase stimulation requires hydrolysis of the beta,gamma-phosphate bond of ATP. However, our data suggest that the mechanism of accessory protein stimulation is such that less than 1 ATP molecule need be hydrolyzed per 10 deoxyribonucleotides incorporated by the DNA polymerase into DNA.  相似文献   

20.
Dynamics of DNA-tracking by two sliding-clamp proteins.   总被引:4,自引:1,他引:3       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号