首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinesin superfamily proteins (KIFs) comprise several dozen molecular motor proteins. The KIF3 heterotrimer complex is one of the most abundantly and ubiquitously expressed KIFs in mammalian cells. To unveil the functions of KIF3, microinjection of function-blocking monovalent antibodies against KIF3 into cultured superior cervical ganglion (SCG) neurons was carried out. They significantly blocked fast axonal transport and brought about inhibition of neurite extension. A yeast two-hybrid binding assay revealed the association of fodrin with the KIF3 motor through KAP3. This was further confirmed by using vesicles collected from large bundles of axons (cauda equina), from which membranous vesicles could be prepared in pure preparations. Both immunoprecipitation and immunoelectron microscopy indicated the colocalization of fodrin and KIF3 on the same vesicles, the results reinforcing the evidence that the cargo of the KIF3 motor consists of fodrin-associating vesicles. In addition, pulse-labeling study implied partial comigration of both molecules as fast flow components. Taken together, the KIF3 motor is engaged in fast axonal transport that conveys membranous components important for neurite extension.  相似文献   

2.
The establishment of left-right asymmetry during development of vertebrate embryos depends on leftward flow in the nodal cavity. The flow is produced by the rotational movement of the posteriorly tilted nodal cilia. However, it remains poorly understood how the nodal cilia are tilted posteriorly, and how the directionality of the flow is translated into gene expression patterns in the embryo. Recent studies have identified signaling molecules involved in these processes. First, planar cell polarity signaling has been shown to be involved in the posterior positioning of the basal bodies of nodal cilia, which leads to the posterior tilting of their rotation axes. Second, identification of putative receptors and signaling molecules suggests a link between the signaling molecules delivered by the nodal flow, and downstream signaling in the cells surrounding the nodal cavity and the lateral plate mesoderm.  相似文献   

3.
Migration of neurons from their birthplace to their final target area is a crucial step in brain development. Here, we show that expression of the off-limits/frizzled3a (olt/fz3a) and off-road/celsr2 (ord/celsr2) genes in neuroepithelial cells maintains the facial (nVII) motor neurons near the pial surface during their caudal migration in the zebrafish hindbrain. In the absence of olt/fz3a expression in the neuroepithelium, nVII motor neurons extended aberrant radial processes towards the ventricular surface and mismigrated radially to the dorsomedial part of the hindbrain. Our findings reveal a novel role for these genes, distinctive from their already known functions, in the regulation of the planar cell polarity (i.e. preventing integration of differentiated neurons into the neuroepithelial layer). This contrasts markedly with their reported role in reintegration of neuroepithelial daughter cells into the neuroepithelial layer after cell division.  相似文献   

4.
To understand the mechanisms of transport for organelles in the axon, we isolated and sequenced the cDNA encoding KIF4 from murine brain, and characterized the molecule biochemically and immunocytochemically. Complete amino acid sequence analysis of KIF4 and ultrastructural studies of KIF4 molecules expressed in Sf9 cells revealed that the protein contains 1,231 amino acid residues (M(r) 139,550) and that the molecule (116-nm rod with globular heads and tail) consists of three domains: an NH2-terminal globular motor domain, a central alpha-helical stalk domain and a COOH-terminal tail domain. KIF4 protein has the property of nucleotide-dependent binding to microtubules, microtubule- activated ATPase activity, and microtubule plus-end-directed motility. Northern blot analysis and in situ hybridization demonstrated that KIF4 is strongly expressed in juvenile tissues including differentiated young neurons, while its expression is decreased considerably in adult mice except in spleen. Immunocytochemical studies revealed that KIF4 colocalized with membranous organelles both in growth cones of differentiated neurons and in the cytoplasm of cultured fibroblasts. During mitotic phase of cell cycle, KIF4 appears to colocalize with membranous organelles in the mitotic spindle. Hence we conclude that KIF4 is a novel microtubule-associated anterograde motor protein for membranous organelles, the expression of which is regulated developmentally.  相似文献   

5.
A set of bipolar cells in the retina of goldfish contains giant synaptic terminals that can be over 10 µm in diameter. Hundreds of thousands of synaptic vesicles fill these terminals and engage in continuous rounds of exocytosis. How the cytoskeleton and other organelles in these neurons are organized to control synaptic activity is unknown. Here, we used 3-D fluorescence and 3-D electron microscopy to visualize the complex subcellular architecture of these terminals. We discovered a thick band of microtubules that emerged from the axon to loop around the terminal periphery throughout the presynaptic space. This previously unknown microtubule structure associated with a substantial population of mitochondria in the synaptic terminal. Drugs that inhibit microtubule-based kinesin motors led to accumulation of mitochondria in the axon. We conclude that this prominent microtubule band is crucial to the transport and localization of mitochondria into the presynaptic space to provide the sustained energy necessary for continuous transmitter release in these giant synaptic terminals.  相似文献   

6.
The Rnf33/Trim60 gene is temporally transcribed in the preimplantation embryo before being silenced at the blastocyst stage but Rnf33 expression is detected in adult testis of the mouse. The putative RNF33 protein is a tripartite motif (TRIM)/RBCC protein composed of a typical RING zinc finger, a B-box 2, two α-helical coiled-coil segments, and a B30.2 domain. As a first step towards the elucidation of the biologic function of RNF33, we aimed in this study to elucidate proteins that associate with RNF33. RNF33-interacting proteins were first derived by the yeast two-hybrid system followed by co-immunoprecipitation assays. Interacting domains were determined by deletion mapping in genetic and biochemical analyzes. RNF33 was shown to interact with the kinesin-2 family members 3A (KIF3A) and 3B (KIF3B) motor proteins in the heterodimeric form known to transport cargos along the microtubule. Domain mapping showed that the RB and B30.2 domains of RNF33 interacted with the respective carboxyl non-motor domains of KIF3A and KIF3B. Since RNF33 interacted with the carboxyl-terminal tail of the KIF3A-KIF3B heterodimer, the motor head section of KIF3A-KIF3B was free and available for association with designated cargo(s) and movement along the microtubule. Data also suggest that RNF33 most likely interacted with KIF3A-KIF3B independent of the adaptor kinesin-associated protein KAP3. This study is a first demonstration of a TRIM protein, namely RNF33, that interacts with the kinesin molecular motors possibly contributing to kinesin-dependent mobilization of specific cargo(s) along the microtubule in the testis of the mouse.  相似文献   

7.
KIF3A is a new microtubule-based anterograde motor in the nerve axon   总被引:24,自引:13,他引:11       下载免费PDF全文
《The Journal of cell biology》1994,125(5):1095-1107
Neurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and axonal membranes, while organelles such as endosomes and autophagic prelysosomal organelles are conveyed retrogradely. Although kinesin and dynein have been identified as good candidates for microtubule-based anterograde and retrograde transporters, respectively, the existence of other motors for performing these complex axonal transports seems quite likely. Here we characterized a new member of the kinesin super-family, KIF3A (50-nm rod with globular head and tail), and found that it is localized in neurons, associated with membrane organelle fractions, and accumulates with anterogradely moving membrane organelles after ligation of peripheral nerves. Furthermore, native KIF3A (a complex of 80/85 KIF3A heavy chain and a 95-kD polypeptide) revealed microtubule gliding activity and baculovirus-expressed KIF3A heavy chain demonstrated microtubule plus end-directed (anterograde) motility in vitro. These findings strongly suggest that KIF3A is a new motor protein for the anterograde fast axonal transport.  相似文献   

8.
9.
In Ustilago maydis, bidirectional transport of early endosomes is microtubule dependent and supports growth and cell separation. During early budding, endosomes accumulate at putative microtubule organizers within the bud, whereas in medium-budded cells, endosome clusters appear at the growing ends of microtubules at the distal cell pole. This suggests that motors of opposing transport direction organize endosomes in budding cells. Here we set out to identify these motors and elucidate the molecular mechanism of endosome reorganization. By PCR we isolated kin3, which encodes an UNC-104/KIF1-like kinesin from U.maydis. Recombinant Kin3 binds microtubules and has ATPase activity. Kin3-green fluorescent protein moves along microtubules in vivo, accumulates at sites of growth and localizes to endosomes. Deletion of kin3 reduces endosome motility to approximately 33%, and abolishes endosome clustering at the distal cell pole and at septa. This results in a transition from bipolar to monopolar budding and cell separation defects. Double mutant analysis indicates that the remaining motility in Deltakin3-mutants depends on dynein, and that dynein and Kin3 counteract on the endosomes to arrange them at opposing cell poles.  相似文献   

10.
Nakagawa T  Setou M  Seog D  Ogasawara K  Dohmae N  Takio K  Hirokawa N 《Cell》2000,103(4):569-581
Intracellular transport mediated by kinesin superfamily proteins (KIFs) is a highly regulated process. The molecular mechanism of KIFs binding to their respective cargoes remains unclear. We report that KIF13A is a novel plus end-directed microtubule-dependent motor protein and associates with beta 1-adaptin, a subunit of the AP-1 adaptor complex. The cargo vesicles of KIF13A contained AP-1 and mannnose-6-phosphate receptor (M6PR). Overexpression of KIF13A resulted in mislocalization of the AP-1 and the M6PR. Functional blockade of KIF13A reduced cell surface expression of the M6PR. Thus, KIF13A transports M6PR-containing vesicles and targets the M6PR from TGN to the plasma membrane via direct interaction with the AP-1 adaptor complex.  相似文献   

11.
A previous study revealed that segments of bowel grafted between the neural tube and somites of a younger chick host embryo would induce a unilateral increase in cellularity of the host's neural tube. The current experiments were done to test the hypotheses that muscle tissue in the wall of the gut is responsible for this growth-promoting effect and that the spinal cord enlargement is the result of a mitogenic action on the neuroepithelium. Fragments of skeletal (E8-15) or cardiac muscle (E4-14) were removed from quail embryos and grafted between the neural tube and somites of chick host embryos (E2). Both skeletal and cardiac muscle grafts mimicked the effect of bowel and induced an increase in cell number as well as a unilateral enlargement of the region of the host's neural tube immediately adjacent to the grafts. The growth-promoting effect of muscle-containing grafts was restricted to the neural tube itself and was not seen in proximate dorsal root or sympathetic ganglia. The action of the grafts of muscle was neither species- nor class-specific, since enlargement of the neural tube was observed following implantation of fetal mouse skeletal muscle into quail hosts. Grafts of skeletal muscle or gut increased the number of cells taking up [3H]thymidine in the host's neuroepithelium as early as 9 h following implantation of a graft. The increase in the number of cells entering the S phase of the cell cycle preceded the increase in cell number. These observations demonstrate that muscle-containing tissues can increase the rate of proliferation of neuroepithelial cells when these tissues are experimentally placed together.  相似文献   

12.
Autophagy is a homoeostatic process necessary for the clearance of damaged or superfluous proteins and organelles. The recycling of intracellular constituents also provides energy during periods of metabolic stress, thereby contributing to cell viability. In addition, disruption of autophagic machinery interferes with embryonic development in several species, although the underlying cellular processes affected remain unclear. Here, we investigate the role of autophagy during the early stages of chick retina development, when the retinal neuroepithelium proliferates and starts to generate the first neurons, the retinal ganglion cells. These two developmental processes are accompanied by programmed cell death. Upon treatment with the autophagic inhibitor 3-methyladenine, retinas accumulated numerous TdT-mediated dUTP nick-end labelling-positive cells that correlated with a lack of the 'eat-me' signal phosphatidylserine (PS). In consequence, neighbouring cells did not engulf apoptotic bodies and they persisted as individual cell corpses, a phenotype that was also observed after blockade of phagocytosis with phospho-L-Serine. Supplying the retinas with methylpyruvate, a cell-permeable substrate for ATP production, restored ATP levels and the presentation of PS at the cell surface. Hence, engulfment and lysosomal degradation of apoptotic bodies were also re-established. Together, these data point to a novel role for the autophagic machinery during the development of the central nervous system.  相似文献   

13.
KIF3A/B, a kinesin involved in intraflagellar transport and Golgi trafficking, is distinctive because it contains two nonidentical motor domains. Our hypothesis is that the two heads have distinct functional properties, which are tuned to maximize the performance of the wild-type heterodimer. To test this, we investigated the motility of wild-type KIF3A/B heterodimer and chimaeric KIF3A/A and KIF3B/B homodimers made by splicing the head of one subunit to the rod and tail of the other. The first result is that KIF3A/B is processive, consistent with its transport function in cells. Secondly, the KIF3B/B homodimer moves at twice the speed of the wild-type motor but has reduced processivity, suggesting a trade-off between speed and processivity. Third, the KIF3A/A homodimer moves fivefold slower than wild-type, demonstrating distinct functional differences between the two heads. The heterodimer speed cannot be accounted for by a sequential head model in which the two heads alternate along the microtubule with identical speeds as in the homodimers. Instead, the data are consistent with a coordinated head model in which detachment of the slow KIF3A head from the microtubule is accelerated roughly threefold by the KIF3B head.  相似文献   

14.
Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 μm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 μm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons.  相似文献   

15.
The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.  相似文献   

16.
17.
The kinesin-3 motor KIF1A functions in neurons, where its fast and superprocessive motility facilitates long-distance transport, but little is known about its force-generating properties. Using optical tweezers, we demonstrate that KIF1A stalls at an opposing load of ~3 pN but more frequently detaches at lower forces. KIF1A rapidly reattaches to the microtubule to resume motion due to its class-specific K-loop, resulting in a unique clustering of force generation events. To test the importance of neck linker docking in KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders. Molecular dynamics simulations predict that V8M and Y89D mutations impair neck linker docking. Indeed, both mutations dramatically reduce the force generation of KIF1A but not the motor’s ability to rapidly reattach to the microtubule. Although both mutations relieve autoinhibition of the full-length motor, the mutant motors display decreased velocities, run lengths, and landing rates and delayed cargo transport in cells. These results advance our understanding of how mutations in KIF1A can manifest in disease.  相似文献   

18.
Proteins of the kinesin superfamily are regulated in their motor activity as well as in their ability to bind to their cargo by carboxyl-terminal associating proteins and phosphorylation. KIF1C, a recently identified member of the KIF1/Unc104 family, was shown to be involved in the retrograde vesicle transport from the Golgi-apparatus to the endoplasmic reticulum. In a yeast two-hybrid screen using the carboxyl-terminal 350 amino acids of KIF1C as a bait, we identified as binding proteins 14-3-3 beta, gamma, epsilon, and zeta. In addition, a clone encoding the carboxyl-terminal 290 amino acids of KIF1C was found, indicating a potential for KIF1C to dimerize. Subsequent transient overexpression experiments showed that KIF1C can dimerize efficiently. However, in untransfected cells, only a small portion of KIF1C was detected as a dimer. The association of 14-3-3 proteins with KIF1C could be confirmed in transient expression systems and in untransfected cells and was dependent on the phosphorylation of serine 1092 located in a consensus binding sequence for 14-3-3 ligands. Serine 1092 was a substrate for the protein kinase casein kinase II in vitro, and inhibition of casein kinase II in cells diminished the association of KIF1C with 14-3-3gamma. Our data thus suggest that KIF1C can form dimers and is associated with proteins of the 14-3-3 family.  相似文献   

19.
Long-distance transport in cells is driven by kinesin and dynein motors that move along microtubule tracks. These motors must be tightly regulated to ensure the spatial and temporal fidelity of their transport events. Transport motors of the kinesin-1 and kinesin-3 families are regulated by autoinhibition, but little is known about the mechanisms that regulate kinesin-2 motors. We show that the homodimeric kinesin-2 motor KIF17 is kept in an inactive state in the absence of cargo. Autoinhibition is caused by a folded conformation that enables nonmotor regions to directly contact and inhibit the enzymatic activity of the motor domain. We define two molecular mechanisms that contribute to autoinhibition of KIF17. First, the C-terminal tail interferes with microtubule binding; and second, a coiled-coil segment blocks processive motility. The latter is a new mechanism for regulation of kinesin motors. This work supports the model that autoinhibition is a general mechanism for regulation of kinesin motors involved in intracellular trafficking events.  相似文献   

20.
Liprin-alpha/SYD-2 is a multimodular scaffolding protein important for presynaptic differentiation and postsynaptic targeting of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid glutamate receptors. However, the molecular mechanisms underlying these functions remain largely unknown. Here we report that liprin-alpha interacts with the neuron-specific kinesin motor KIF1A. KIF1A colocalizes with liprin-alpha in various subcellular regions of neurons. KIF1A coaccumulates with liprin-alpha in ligated sciatic nerves. KIF1A cofractionates and coimmunopreciptates with liprin-alpha and various liprin-alpha-associated membrane, signaling, and scaffolding proteins including alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors, GRIP/ABP, RIM, GIT1, and beta PIX. These results suggest that liprin-alpha functions as a KIF1A receptor, linking KIF1A to various liprin-alpha-associated proteins for their transport in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号