首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

2.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

3.
Thiamin pyrophosphokinase (TPK) transfers a pyrophosphate group from ATP to the hydroxyl group of thiamin and produces thiamin pyrophosphate (TPP). TPP is the cofactor of metabolically important enzymes such as pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched-chain α-keto acid dehydrogenase, transketolase and 2-hydroxyphytanoyl-CoA lyase. Thiamin deficiency results in Wernike-Korsakof Syndrome (WKS) due to neurological disorder and wet beriberi, a potentially fatal cardiovascular disease. Mouse TPK associates as a dimer revealed by previous solved crystallographic structures. In this study, we report mouse TPK complexed with TPP-Mg2+ and thiamin -Mg2+, respectively, in a new crystal form. In these two structures, four mouse TPK molecules were found in each asymmetric unit. Although we cannot rule out this tetramer form can be an artifact from crystal packing, mouse TPK tetramer has a more closed ATP binding pocket and has the potential to provide specific interactions between mouse TPK and ATP compared with the previous dimeric structure and is likely to be an active form.  相似文献   

4.
Purified bovine heart pyruvate dehydrogenase complex was used to investigate the effects of monovalent cations and alpha-ketoisovalerate on pyruvate dehydrogenase (PDH) kinase inhibition by thiamin pyrophosphate. Initial velocity patterns for thiamin pyrophosphate inhibition were consistent with hyperbolic non-competitive or hyperbolic uncompetitive inhibition at various K+ concentrations between 0 and 120 mM. The Kis, Kid, and Kin for thiamin pyrophosphate were in the range of 0.009 to 5.1 microM over the range of K+ concentrations tested. In the absence of K+, 1 mM alpha-ketoisovalerate had no effect on PDH kinase inhibition by thiamin pyrophosphate, whereas in the presence of 20 mM K+, alpha-ketoisovalerate stimulated PDH kinase activity almost 2-fold over the range of 0-80 microM thiamin pyrophosphate. Half-maximal stimulation by alpha-ketoisovalerate occurred at about 200 microM in the presence of 100 microM thiamin pyrophosphate and 20 mM K+. Similar but less extensive changes occurred in the presence of 100 microM thiamin pyrophosphate and 1 mM NH4+. Initial velocity patterns for PDH kinase inhibition by thiamin pyrophosphate in the presence of 2 mM alpha-ketoisovalerate were mixed noncompetitive, but alpha-ketoisovalerate increased the Vm and Km for adenosine 5'-triphosphate in the presence of inhibitor. In the presence of thiamin pyrophosphate, PDH kinase remained stimulated after chromatography on Sephadex G-25 to remove alpha-ketoisovalerate. The results indicate that acylation of pyruvate dehydrogenase complex by alpha-ketoisovalerate results in PDH kinase stimulation but only in the presence of monovalent cations and thiamin pyrophosphate.  相似文献   

5.
Kinetic and binding studies were carried out on substrate and cofactor interaction with the pyruvate dehydrogenase complex from bovine heart. Fluoropyruvate and pyruvamide, previously described as irreversible and allosteric inhibitors, respectively, are strong competitive inhibitors with respect to pyruvate. Binding of thiamin diphosphate was used to study differences between the active dephosphorylated and inactive phosphorylated enzyme states by spectroscopic methods. The change in both the intrinsic tryptophan fluorescence and the fluorescence of the 6-bromoacetyl-2-dimethylaminonaphthalene-labelled enzyme complex produced on addition of the cofactor showed similar binding behaviour for both enzyme forms, with slightly higher affinity for the phosphorylated form. Changes in the CD spectrum, especially the negative Cotton effect at 330 nm as a function of cofactor concentration, both in the absence and presence of pyruvate, also revealed no drastic differences between the two enzyme forms. Thus, inactivation of the enzyme activity of the pyruvate dehydrogenase complex is not caused by impeding the binding of substrate or cofactor.  相似文献   

6.
To clarify the enzymatic mechanisms of brain damage inthiamin deficiency, glucose oxidation, acetylcholine synthesis, and the activities of the three major thiamin pyrophosphate (TPP) dependent brain enzymes were compared in untreated controls, in symptomatic pyrithiamin-induced thiamin-deficient rats, and in animals in which the symptoms had been reversed by treatment with thiamin. Although brain slices from symptomatic animals produced14CO2 and14C-acetylcholine from [U-14C]glucose at rates similar to controls under resting conditions, their K+-induced-increase declined by 50 and 75%, respectively. In brain homogenates from these same animals, the activities of two TPP-dependent enzymes transketolase (EC 2.2.1.1) and 2-oxoglutarate dehydrogenase complex (EC 1.2.4.2, EC 2.3.1.61, EC 1.6.4.3) decreased 60–65% and 36%, respectively. The activity of the third TPP-dependent enzyme, pyruvate dehydrogenase complex (EC 1.2.4.1, EC 2.3.1.12, EC 1.6.4.3.) did not change nor did the activity of its activator pyruvate dehydrogenase phosphate phosphatase (EC 3.1.3.43). Although treatment with thiamin for seven days reversed the neurological symptoms and restored glucose oxidation, acetylcholine synthesis and 2-oxoglutarate dehydrogenase activity to normal, transketolase activity remained 30–32% lower than controls. The activities of other TPP-independent enzymes (hexokinase, phosphofructokinase, and glutamate dehydrogenase) were normal in both deficient and reversed animals.Thus, changes in the neurological signs during pyrithiamin-induced thiamin deficiency and in recovery paralleled the reversible damage to a mitochondrial enzyme and impairment of glucose oxidation and acetylcholine synthesis. A more sustained deficit in the pentose pathway enzyme, transketolase, may relate to the anatomical abnormalities that accompany thiamin deficiency.Dedicated to Henry McIlwain.  相似文献   

7.
Oxidative decarboxylation of pyruvate to form acetyl-coenzyme A, a crucial step in many metabolic pathways, is carried out in most aerobic organisms by the multienzyme complex pyruvate dehydrogenase. In most anaerobes, the same reaction is usually catalyzed by a single enzyme, pyruvate:ferredoxin oxidoreductase (PFOR). Thus, PFOR is a potential target for drug design against certain anaerobic pathogens. Here, we report the crystal structures of the homodimeric Desulfovibrio africanus PFOR (data to 2.3 A resolution), and of its complex with pyruvate (3.0 A resolution). The structures show that each subunit consists of seven domains, one of which affords protection against oxygen. The thiamin pyrophosphate (TPP) cofactor and the three [4Fe-4S] clusters are suitably arranged to provide a plausible electron transfer pathway. In addition, the PFOR-pyruvate complex structure shows the noncovalent fixation of the substrate before the catalytic reaction.  相似文献   

8.
A tryptophan residue at position 487 in Zymomonas mobilis pyruvate decarboxylase was altered to leucine by site-directed mutagenesis. This modified Z. mobilis pyruvate decarboxylase was active when expressed in Escherichia coli and had unchanged kinetics towards pyruvate. The enzyme showed a decreased affinity for the cofactors with the half-saturating concentrations increasing from 0.64 to 9.0 microM for thiamin diphosphate and from 4.21 to 45 microM for Mg2+. Unlike the wild-type enzyme, there was little quenching of tryptophan fluorescence upon adding cofactors to this modified form. The data suggest that tryptophan-487 is close to the cofactor binding site but is not required absolutely for pyruvate decarboxylase activity. Substitution of asparagine, threonine or glycine for aspartate-440, a residue which is conserved between many thiamin diphosphate-dependent enzymes, completely abolishes enzyme activity.  相似文献   

9.
The mechanism of bacimethrin (2) toxicity has been determined. This compound is converted to 2'-methoxy-thiamin pyrophosphate (10) by the thiamin biosynthetic enzymes. Of the seven thiamin pyrophosphate utilizing enzymes in Escherichia coli, 2'-methoxy-thiamin pyrophosphate inhibits alpha-ketoglutarate dehydrogenase, transketolase, and deoxy-D-xylulose-5-phosphate synthase. Bacimethrin does not cause repression of the genes coding for the thiamin biosynthetic enzymes.  相似文献   

10.
The pyruvate dehydrogenase component of the bovine kidney pyruvate dehydrogenase complex has two thiamin-PP binding sites per α2β2 tetramer. Titration of these binding sites with the transition state analog, thiamin thiazolone pyrophosphate, strongly inhibits phosphorylation of pyruvate dehydrogenase by pyruvate dehydrogenase kinase and ATP. The analog has little effect, if any, on dephosphorylation of phosphorylated pyruvate dehydrogenase by pyruvate dehydrogenase phosphatase. Phosphorylation of pyruvate dehydrogenase inactivates the enzyme, but does not significantly affect the thiamin-PP binding sites. It appears that phosphorylation produces a conformational change in pyruvate dehydrogenase that displaces a catalytic group (or groups) at the active center.  相似文献   

11.
The genes that encode the five known enzymes of the mandelate pathway of Pseudomonas putida (ATCC 12633), mandelate racemase (mdlA), (S)-mandelate dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), NAD(+)-dependent benzaldehyde dehydrogenase (mdlD), and NADP(+)-dependent benzaldehyde dehydrogenase (mdlE), have been cloned. The genes for (S)-mandelate dehydrogenase and benzoylformate decarboxylase have been sequenced; these genes and that for mandelate racemase [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540] are organized in an operon (mdlCBA). Mandelate racemase has regions of sequence similarity to muconate lactonizing enzymes I and II from P. putida. (S)-Mandelate dehydrogenase is predicted to be 393 amino acids in length and to have a molecular weight of 43,352; it has regions of sequence similarity to glycolate oxidase from spinach and ferricytochrome b2 lactate dehydrogenase from yeast. Benzoylformate decarboxylase is predicted to be 499 amino acids in length and to have a molecular weight of 53,621; it has regions of sequence similarity to enzymes that decarboxylate pyruvate with thiamin pyrophosphate as cofactor. These observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways. The gene for benzoylformate decarboxylase has been expressed in Escherichia coli with the trc promoter, and homogeneous enzyme has been isolated from induced cells.  相似文献   

12.
Enzymes that use thiamin diphosphate (ThDP), the biologically active derivative of vitamin B1, as a cofactor play important roles in cellular metabolism in all domains of life. The analysis of ThDP enzymes in the past decades have provided a general framework for our understanding of enzyme catalysis of this protein family. In this review, we will discuss recent advances in the field that include the observation of “unusual” reactions and reaction intermediates that highlight the chemical versatility of the thiamin cofactor. Further topics cover the structural basis of cooperativity of ThDP enzymes, novel insights into the mechanism and structure of selected enzymes, and the discovery of “superassemblies” as reported, for example, acetohydroxy acid synthase. Finally, we summarize recent findings in the structural organisation and mode of action of 2-keto acid dehydrogenase multienzyme complexes and discuss future directions of this exciting research field.  相似文献   

13.
Bromopyruvate behaves as an active-site-directed inhibitor of the pyruvate decarboxylase (E1) component of the pyruvate dehydrogenase complex of Escherichia coli. It requires the cofactor thiamin pyrophosphate (TPP) and acts initially as an inhibitor competitive with pyruvate (Ki ca. 90 microM) but then proceeds to react irreversibly with the enzyme, probably with the thiol group of a cysteine residue. E1 catalyzes the decomposition of bromopyruvate, the enzyme becoming inactivated once every 40-60 turnovers. Bromopyruvate also inactivates the intact pyruvate dehydrogenase complex in a TPP-dependent process, but the inhibition is more rapid and is mechanistically different. Under these conditions, bromopyruvate is decarboxylated, and the lipoic acid residues in the lipoate acetyltransferase (E2) component become reductively bromoacetylated. Further bromopyruvate then reacts with the new thiol groups thus generated in the lipoic acid residues, inactivating the complex. If reaction with the lipoic acid residues is prevented by prior treatment of the complex with N-ethylmaleimide in the presence of pyruvate, the mode of inhibition reverts to irreversible reaction with the E1 component. In both types of inhibition of E1, reaction of 1 mol of bromopyruvate/mol of E1 chain is required for complete inactivation, and all the evidence is consistent with reaction taking place at or near the pyruvate binding site.  相似文献   

14.
L R Stepp  L J Reed 《Biochemistry》1985,24(25):7187-7191
The pyruvate dehydrogenase multienzyme complex from bovine kidney and heart is inactivated by treatment with pyridoxal 5'-phosphate and sodium cyanide or sodium borohydride. The site of this inhibition is the pyruvate dehydrogenase (E1) component of the complex. Inactivation of E1 by the pyridoxal phosphate-cyanide treatment was prevented by thiamin pyrophosphate. Equilibrium binding studies showed that E1 contains two thiamin pyrophosphate binding sites per molecule (alpha 2 beta 2) and that modification of E1 increased the dissociation constant (Kd) for thiamin pyrophosphate about 5-fold. Incorporation of approximately 2.4 equiv of 14CN per mole of E1 tetramer in the presence of pyridoxal phosphate resulted in about a 90% loss of E1 activity. Radioactivity was incorporated predominantly into the E1 alpha subunit. Radioactive N6-pyridoxyllysine was identified in an acid hydrolysate of the E1-pyridoxal phosphate complex that had been reduced with NaB3H4. The data are interpreted to indicate that in the presence of sodium cyanide or sodium borohydride, pyridoxal phosphate reacts with a lysine residue at or near the thiamin pyrophosphate binding site of E1. This binding site is apparently located on the alpha subunit.  相似文献   

15.
The herbicide suphometuron methyl inhibits the utilization of pyruvate and 2-ketobutyrate by the branched-chain amino acid biosynthetic enzyme acetolactate synthase. Eighteen insertions of the transposon Tn10 into the genome of Salmonella typhimurium LT2 caused hypersensitivity to this herbicide. Five of these insertions conferred a partial auxotrophic requirement. Concurrent herbicide sensitivity and heat-labile pantothenate auxotrophy was due to panD::Tn10 mutations, while coincident sulphometuron methyl sensitivity and thiamin auxotrophy was attributable to thiA::Tn10 mutations. The phenotypes of these mutations suggested that coenzyme A and thiamin pyrophosphate availability modulated the cells' response to sulphometuron methyl. A model suggesting a key role for 2-ketobutyrate accumulation in herbicide action is supported by the function of thiamin pyrophosphate in 2-ketoacid metabolism and the known role of a 2-ketoacid in coenzyme A synthesis.  相似文献   

16.
In the progress curve of the reaction of the pyruvate dehydrogenase complex, a lag phase was observed when the concentration of thiamin diphosphate was lower than usual (about 0.2-1 mM) in the enzyme assay. The length of the lag phase was dependent on thiamin diphosphate concentration, ranging from 0.2 min to 2 min as the thiamin diphosphate concentration varied from 800 nM to 22 nM. The lag phase was also observed in the elementary steps catalyzed by the pyruvate dehydrogenase component. A Km value of 107 nM was found for thiamin diphosphate with respect to the steady-state reaction rate following the lag phase. The pre-steady-state kinetic data indicate that the resulting lag phase was the consequence of a slow holoenzyme formation from apoenzyme and thiamin diphosphate. The thiamin diphosphate can bind to the pyruvate dehydrogenase complex in the absence of pyruvate, but the presence of 2 mM pyruvate increases the rate constant of binding from 1.4 X 10(4) M-1 S-1 to 1.3 X 10(5) M-1 S-1 and decreases the rate constant of dissociation from 2.3 X 10(-2) S-1 to 4.1 X 10(-3) S-1. On the other hand, the effect of pyruvate on the thiamin diphosphate binding revealed the existence of a thiamin-diphosphate-independent pyruvate-binding site in the pyruvate dehydrogenase complex. Direct evidence was also obtained with fluorescence techniques for the existence of this binding site and the dissociation constant of pyruvate was found to be 0.38 mM. On the basis of these data we have proposed a random mechanism for the binding of pyruvate and thiamin diphosphate to the complex. Binding of substrates to the enzyme complex caused an increase in the fluorescence of the dansylaziridine-labelled pyruvate dehydrogenase complex, showing that binding of substrates to the complex is accompanied by structural changes.  相似文献   

17.
1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7...  相似文献   

18.
1. The effects of glyoxylate on partially purified preparations of aconitate hydratase, isocitrate dehydrogenase and oxoglutarate dehydrogenase were compared with those of oxalomalate and hydroxyoxoglutarate (obtained by condensation of glyoxylate with oxaloacetate and pyruvate respectively). 2. Glyoxylate (1mm) did not affect aconitate hydratase and isocitrate dehydrogenase, whereas oxalomalate (1mm) inhibited the enzyme activities completely. 3. Glyoxylate (0.025mm) inhibited oxoglutarate dehydrogenase irreversibly, whereas the same concentrations of oxalomalate and hydroxyoxoglutarate were ineffective. This inhibitory effect was prevented if oxoglutarate, pyruvate or oxaloacetate was mixed with the enzyme before the glyoxylate. 4. Incubation of oxoglutarate dehydrogenase with radioactive glyoxylate produced radioactive carbon dioxide; radioactivity was also recovered in the portion of the enzyme identified with thiamin pyrophosphate. 5. The behaviour of glyoxylate in producing multiple inhibitions of the citric acid cycle, either by direct interaction with oxoglutarate dehydrogenase, or by means of its condensation compounds which inhibit aconitate hydratase and isocitrate dehydrogenase, is discussed.  相似文献   

19.
Thiamin pyrophosphokinase (TPK, EC 2.7.6.2) catalyses phosphorylation of thiamin to thiamin pyrophosphate, an active enzyme cofactor. Here we describe the cloning of complete human TPK1 cDNA from an adult liver library. Human TPK1 is 89% identical to murine TPK1 at the protein level. The gene maps to chromosome 7q34-36, consists of at least eight exons, and spans a distance at least of 420 kb. The mRNA of human TPK1 is highly expressed in testis, small intestine and kidney with lesser but detectable expression in brain, liver, placenta and spleen. The availability of the human TPK1 gene will provide another useful tool for studying the role of this enzyme in human thiamin metabolism and deficiency state.  相似文献   

20.
Thiamin pyrophosphate, CoASH, and NAD+ have been shown to reversibly bind to the purified bovine liver mitochondrial branched-chain α-ketoacid dehydrogenase complex. When saturated with thiamin pyrophosphate, the complex was more stable to heat and chymotrypsin inactivation. Under identical saturating conditions a conformational change in the complex was observed by circular dichroism spectroscopy. We postulate that thiamin pyrophosphate can increase the biological half-life of the in vivo, membrane-bound complex through conformational changes induced by the binding of this cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号