首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文报道利用抗生素产生菌吸水链霉菌应城变种Leu-SmR。90-11菌株(Leu’smr)和庆丰链霉菌A553-1菌株(Pro-SmR)为亲株,以42%的PEG4000为助融剂,进行了种问原生质体融合,用间接法检出融合重组子38株,其重组频率约为4.5×10-4。重组子除孢子丝形态外,孢子堆颜色、抗药性、抗菌活性和抗生素生物合成能力方面与亲株均有一定差别,而且不同重组子之间也不相同,特别在抗菌活性方面,其中重组子FL-42和FL-48不仅具有两个亲株所产生的4种抗生素的活性,而且还产生两个亲株不具有的活性物质。通过纸层析谱表明,这种活性物质,两个重组子之间也不相同。  相似文献   

2.
以庆丰链霉菌(SMr,42℃不能生长,产庆丰霉索,可抑制细菌生长)与吸水链霉菌井冈变种(sM5,42℃生长良好,产井冈霉素,不抑制细菌生长)为亲株,在42%PEGl000诱导下进行原生质体融合,在含SM 100μg/ml,42℃培养的再生平板上直接选择耐温型融合子,融台率为1O-5—1O-4左右,经分离传代后可得到稳定的耐温型的单倍体重组子,即可在42℃生长,并且有链霉素抗性和抑制细菌生长的活性。初步测定了四个重组子产生的抗菌物质的性质,都与亲株产生的庆丰霉素、井冈霉素不同,其中F1-38,F1-16和IFM3-32三个重组子的抗生素在波长274mm处有一个紫外吸收小峰,而重组子F6-6有二个活性部分,其一在紫外线下呈荧光,另一则具有酸碱指示剂特性。  相似文献   

3.
通过庆丰链霉菌M15S与吸水链霉菌井冈变种#75菌株的原生质体种间融合,得到稳定的耐温型重组子F1-38和F6-6等,其生长的上限温度分别为53℃和63℃,而亲株Ml5s和~#75则分别为39℃和50℃。将这两个重组子产生的淀粉酶的耐温性与双亲株的淀粉酶相比较表明,这两个耐温型重组子淀粉酶的热稳定性均高于亲株;随着菌体培养温度的提高,淀粉酶的热稳定性增加,一些重组子的淀粉酶活力大大提高。  相似文献   

4.
RvAl8是链霉菌原生质体种间融合(亲株为庆丰链霉菌和吸水链霉菌井冈变种)得到的一株原养型重组子所产生的一个新的代谢产物,它存在于细胞内,是一个酸性非水溶性的化合物,能溶于甲醇、乙醇、丙酮、乙酸乙酯和环已烷等,微溶于氯仿。它对革蓝氏阳性细菌和一些植物病原真菌有较强的制菌作用,能引起纹枯病菌的异常分枝。用柱层析和液相色谱相结合的方法提纯后的纯品经紫外、红外、高效液相、核磁共振、质谱等分析证明它是一个理化和生物性质均不同于=亲株产物一一井冈霉素和庆丰霉素的新代谢产物。并将RvAlB的理化、生物性质和二亲株产物井冈霉素及庆丰霉素作了比较。  相似文献   

5.
庆丰链霉菌A201菌株的SQP1质粒可以通过混合培养接合转移到井冈链霉菌VA4菌株的细胞中,转移频率为2—8%。接合子p菌株的形态特征和亲株VA4相似,但却获得了产生抑制细菌的抗生素的能力,这种抑制细菌的能力在遗传上是稳定的。高温预培养能使接合子P2菌株抑细菌活性受到消除,消除频率达10%以上。鉴定P2接合子的发酵产物证明包含二个抗菌物质,一个是它本来的产物井冈霉素,另一个是新获得的抑制细菌物质庆丰霉素,后者的产生是由于SQP1进入新寄主细胞的结果。  相似文献   

6.
天然无抗菌活性的变青链霉菌1326与链霉菌1254的营养缺陷型变株进行种间原生质体融合,获得了原养型融合体,频率为10-6—10-5。融合前双亲株原生质体经52℃水浴处理4min,融台频率有所提高,约有一半的融合体菌株在琼脂平板上培养后显示有不同程度的抗菌活性,但绝大多数皆不稳定。从755株融合体中筛选到5株抗菌活性较稳定的菌株,并对其中三株所产生的抗生素作了初步鉴别。发现一株产生中性脂溶性抗生素,其余两株所产生的抗生素皆为碱性非典型脂溶性物质。尽管此等产物的理化性质还有待进一步鉴别,从中发现新化合物的几率是否大于传统的筛选途径,也还需要更多的筛选实践才能说明,但为了进一步开发利用微生物资源,这一途径似值得探讨。  相似文献   

7.
吸水链霉菌NND-52-C菌株是大环内酯类抗生素 阿扎霉素B的高产菌株。采用原生质体转化技术 ,将来自变铅青链霉菌TK2 4菌株的pIJ70 2质粒转化吸水链霉菌NND-52-C菌株的原生质体 ,建立了吸水链霉菌NND-52-C菌株的基因工程宿主载体系统。确定了NND-52-C菌株原生质体制备和再生的条件 ,其原生质体形成率达到 108个 mL ,再生率约为0.2 % ,转化率为102~103个转化子 μg质粒DNA。  相似文献   

8.
齐海燕  郑幼霞   《微生物学通报》1989,16(4):206-208
通过庆幸链霉菌M15S与吸水链霉菌井冈变种~#75菌株的原生质体种间融合,得到稳定的耐温型重组子F1-38和F6-6等,其生长的上限温度分别为53℃和63℃,而亲株M15S和~#75则分别为39℃和50℃。将这两个重组子产生的淀粉酶的耐温性与双亲株的淀粉酶相比较表明,这两个耐温型重组子淀粉酶的热稳定性均高于亲株;随着菌体培养温度的提高,淀粉酶的热稳定性增加,一些重组子的淀粉酶活力大大提高。  相似文献   

9.
酿酒酵母与糖化酵母的种间原生质体融合及其融合子的鉴定   总被引:10,自引:0,他引:10  
本文报道了酒精生产菌株K氏酿酒酵母Sacchormyces cerevisiae var.ellipsoideus的HUK-1(his-,二倍体,但在我们所试的5种产孢培养基上均不产孢)与糖化酵母Sac—charomyces diastaticus 7c(arg-,a)的种间原生质体融合,其营养标记互补的融合频率约是2.07×10-6—3.40×10-5。这些融合子曾在选择培养基MMs或Mmo上连续传代10次,以促进两亲核的融合。融合子的酒精发酵特性,细胞形态、体积大小、DNA含量、繁殖速率、发酵强度以及产孢能力等方面的观察和测定结果表明,均不同于双亲菌株。用显微操作器解剖了个别原养型融台子HU—KDF—185的4孢子子囊,在获得的93个单孢株中,其淀粉发酵特性和遗传标记均有双亲类型的分离或重组现象。上述实验结果充分证明了不同倍性的酵母之间可以通过原生质体融合获得种间杂种。  相似文献   

10.
庆丰链霉菌原生质体的形成、再生及融合重组的研究   总被引:4,自引:0,他引:4  
庆丰链霉菌生长在不含甘氨酸的培养基中,其细胞壁能很好地被溶菌酶溶解,释放出原生质体。原生质体不仅可以在R_2、RM和RG培养基上再生,而且在高渗庆丰链霉菌斜面孢子培养基上也能再生,孢子也比较丰满。A54菌株的再生频率是30.5%,A201菌株为38%。原生质体在4℃贮存过夜,再生频率降低30%以上。PEG能有效地诱导庆丰链霉菌原生质体融合重组,不同分子量的PEG诱导效果不一样,PEG1000的效果最好,重组频率可达10~(-2),和常规杂交相比,重组频率可以提高10—1000倍。用PEG诱导原生质体融合重组时,性因子的存在与否对重组频率没有明显的影响。  相似文献   

11.
大肠杆菌(E.coli)N100携带的pK01-26质粒插入烟草(Nicotiana tobacHm var.)叶绿体启动基因片段的重组质粒。该质粒以大肠杆菌HB101为受体可以再转化,转化频率为4.93×10-6,以枯草杆菌168为受体不能实现转化。上述两种受体菌株的原生质体,经处理,再生细胞壁后,分别获得转化子。经原生质体转化,以大肠杆菌HB101为受体的转化频率为2.7×10-4频率为2.6×10-5。以H  相似文献   

12.
链霉菌原生质体种间融合提高细胞分裂素效价的研究   总被引:1,自引:0,他引:1  
本文报道粉红孢类群的泾阳链霉菌与淡紫灰链霉菌不液化亚种的原生质体种间融合重组的结果。利用单亲灭活和双亲株的遗传标记筛选细胞分裂素的融合子,融合率为 10-4—10-2。在所得的融合菌株中,F1211菌株的CTK效价为292μg/L,F1613的CTK效价为857μg/L,比低产原始亲株提高2—7倍,比高产亲株提高0.3--3.0倍。在电子显微镜下观察到融合过程。  相似文献   

13.
种间原生质体融合提高巴龙霉素单位产量的研究   总被引:1,自引:0,他引:1  
将巴龙霉素产生菌与新霉素产生菌的高产变株进行了种间原生质体融合,融合频率为10-4左右。在4l0株稳定的原养型重组体中,产生巴龙霉素者占58%。在200株产生巴龙霉素的种间重组体中,单位产量在1500μg/ml以上的约10%,获得了比巴龙霉素产生菌原始菌株(单位产量300μg/ml)单位产量高5—6倍的重组体菌株。核磁共振谱和质谱测定证明,高单位重组体所产抗生素确为巴龙霉素。结果表明,为了提高某一抗生素产生菌的单位产量,使之与另一生物合成途径相似的抗生素产生菌的高产变株进行种间杂交,是一值得探索的新途径。  相似文献   

14.
应用原生质体融合技术定向改造林可霉素产生菌的探索   总被引:3,自引:0,他引:3  
金色链霉菌streptomyces aureofaciens(LMr,CTCr,产金霉素)的原生质体经u。V.照射40min灭活后,与林可链霉菌林可变种Streptomyces Iinclnensis Var lincilne—nsis(LMr,CTCI,产林可霉素),在42%PEG(Mw6000)诱导下进行种间原生质体融合,在含金霉素50μg/Mi的再生平板上直接选择融合子,融台率达9.05×10-5。从大量融合体中筛选到4株产生抗菌物质不同于亲株并较稳定的菌株。对其中一株所产的抗生索作了初步鉴别,推测其结构与林可霉素相近。另一株的薄层层析RVBf值与氯林可霉素相近,尽管此等产物还有待于进一步鉴别,但这一育种途径值得探讨。  相似文献   

15.
以龟裂链霉菌(S.Rimosus,Otcr,Sm s)和灰色链霉菌(S.Griseus,Smr,Otcs)为原始出发菌株,经NTG诱变处理,获得前者(Asp-)和后者(cys-)营养缺陷型突变株,制成109个/m1等量原生质体混合液,在岛津细胞融合装置SSH—C11融合槽(电极间距为0.5mm)内,以频率lMHz、强度800V/cm的高频交流电场作电介质,电泳15s形成原生质体珠串,旋即施加电场强度6 kV/cm、短时程20μs的直流高压方形电脉冲触发原生质体融合,在R3再生培养基上选取34971个菌落,移植于双抗基本培养基,检出四个双抗原养型融合子。它们具有亲株的优良生物学特性,生长速度较快,产素能力大,抗菌活性高。生物显影结果表明,它还产生两个亲株所不具有的抗菌活性物质。  相似文献   

16.
庆丰链霉菌中SQP1质粒控制致育性的遗传证明   总被引:1,自引:0,他引:1  
我们以前的工作已经证明,野生型庆丰链霉菌生物合成Qm的过程,有sQP1质粒参与(SQP1 ),它可以受质粒消除剂的作用,以1.8一19%的频率消除而产生不能合成Qm的突变株(SQP1~-);它们的营养缺陷型互补对菌株杂交,可以发生基因交换而生成原养型重组子。以后又观察到重组的频率因亲株携带SQP1质粒的状态不同而有明显的差异,SQP1~ ×SQP1~-(或SQP1~ ×SQP1~ )杂交,产生重组子的数目要比SQP1~-×SQP1~-杂交高100—1000倍。本文报道的实验数据,指出庆丰链霉菌的致育性受SQP1质粒所控制。  相似文献   

17.
本文采用原生质体融合技术,把链霉素生产菌——灰色链霉菌No.45 Streptomyces griseus No.45(Lin,Rif‘)同耐高温的不产生抗生素的热灰紫链霉菌T272 Strep-griseus thermogriseoviolaceus T272(Lins,Riff)进行了原生质体融合。以抗性为选择标记,以PEG6000为助融剂,选出了融合体。制备超薄切片后在电镜下观察了原生质体融合的详细过程。在链霉素生物合成受抑制的高温(37℃)下,测定了融合体的抑菌括性,从形态上与两亲株不同的46株融合体中发现6.3%的融合体既有耐高温的特性也有抑菌的活性。  相似文献   

18.
从大环内酯类抗生索麦迪霉素的产生菌生米卡链霉菌1748(Streptomyces,mycarofa-ciens1748)中首次分离到质粒pSMYl DNA,通过琼脂糖凝胶电泳和电镜观察,测定pSMYl的分子量为7.17×106道尔顿。用限制性内切酶EcoRI、PstI、XhoI、SalI和BamHl酶切该质粒DNA,构成了pSMYl的限制性内切酶酶切图谱。EcoRI、Pstl对该质粒均只有一个切点。pSMYI能转化到变青链霉菌1326(S.lividansl326)菌株中能稳定地存在,且具有形成麻点(pock)的特性。  相似文献   

19.
本文报道用清亮裂解液PEG沉淀法从庆丰链霉菌M-15菌株中分离到质粒DNA,琼脂糖凝胶电泳用溴化乙锭染色及CsCl-EtBr密度梯度离心,在紫外线下观察均表明除了染色体带之外还有一条质粒带。我们摄制的电镜照片表明存在共价闭合超盘旋和开放环形两种分子构型,以多数大小相近的分子周长取平均值,按1微米=2.07×10~6道尔顿的公式计算,庆丰链老菌质粒DNA分子量约为10×10~6道尔顿。  相似文献   

20.
刁文娇  朱道君  潘龙  陈旭升 《微生物学报》2021,61(11):3542-3556
[目的] 研究小白链霉菌(Streptomyces albulus)中ε-聚赖氨酸降解酶(Pld)的分布特征和生理功能。[方法] 利用生物信息学手段对已报道的ε-聚赖氨酸(ε-PL)产生菌的Pld进行挖掘和分析,再通过遗传学方法对小白链霉菌M-Z18基因组中存在的两种pld进行敲除、回补和过表达,最后研究重组菌降解ε-PL能力、最小ε-PL抑制浓度(MIC)及其合成ε-PL情况。[结果] PldⅠ和PldⅡ广泛且同时分布于小白链霉菌中,蛋白序列高度保守;PldⅠ、PldⅡ在小白链霉菌M-Z18中均能行使降解ε-PL的功能,但PldⅡ降解活性占主导地位且PldⅠ和PldⅡ对降解ε-PL具有协同作用;pldⅠpldⅡ过表达重组菌对ε-PL的MIC值显著提高,其中双过表达pldⅠpldⅡ菌株对ε-PL的MIC值是出发菌株的2.19倍。构建的pld重组菌与出发菌株相比,在考察pH值范围内(pH 3.0-5.5)的ε-PL产量未表现出显著差异。[结论] 小白链霉菌中广泛分布PldⅠ和PldⅡ且序列高度保守,主要生理功能是保护小白链霉菌在中性环境中免受自身产物ε-PL的抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号