首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recombination rates have been examined in two-point crosses of various defined cyc1 mutations that cause the loss or nonfunction of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. Recombinants arising by three different means were investigated, including X-ray induced mitotic recombination, spontaneous mitotic recombination, and meiotic recombination. Heteroallelic diploid strains were derived by crossing cyc1 mutants containing a series of alterations at or near the same site to cyc1 mutants containing alterations at various distances. Marked disproportionalities between physical distances and recombination frequencies were observed with certain cyc1 mutations, indicating that certain mismatched bases can significantly affect recombination. The marker effects were more pronounced when the two mutational sites of the heteroalleles were within about 20 base pairs, but separated by at least 4 base pairs. Two alleles, cyc1-163 and cyc1-166, which arose by G.C----C.G transversions at nucleotide positions 3 and 194, respectively, gave rise to especially high rates of recombination. Other mutations having different substitutions at the same nucleotide positions were not associated with abnormally high recombination frequencies. We suggest that these marker effects are due to the lack of repair of either G/G or C/C mismatched base pairs, while the other mismatched base pair of the heteroallele undergoes substantial repair. Furthermore, we suggest that diminished recombination frequencies are due to the concomitant repair of both mismatches within the same DNA tract.  相似文献   

3.
Roles of recA mutant allele (recA495) in frameshift mutagenesis   总被引:1,自引:0,他引:1  
The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF) induces frameshift mutations located within two types of specific sequences (mutation hot spots): i) contiguous guanine sequences and ii) alternating GC sequences. The genetic requirements of these frameshift events were investigated using specific reversion assays. AAF-induced -2 frameshift mutagenesis at alternating GC sequences is peculiar in that it requires a LexA- controlled function which is not UmuDC and occurs in the absence of RecA protein, provided the SOS regulon is derepressed. Moreover, the non-activated form of the RecA protein was shown to act as an inhibitor in this mutation pathway. As we were interested in elucidating this mutation pathway, we have developed a convenient spot reversion assay specific for the detection of this class of mutations. This assay allowed us to isolate E coli mutants affected either in repair or mutagenesis functions. One particular mutant, recA495, is very sensitive to UV and N-AcO-AAF, and is defective in recombination and UV mutagenesis. The RecA495 protein exhibits very low binding to both single- and double-stranded DNA. We show that when the SOS regulon is derepressed, the recA495 allele has two contrasting roles in frameshift mutagenesis: i) it prevents the induction of -1 frameshift mutations at repetitive sequences and ii) it is permissive for the induction of -2 frameshift mutations within alternating GC sequences.  相似文献   

4.
The investigation of mutagenic mechanisms in Haemophilus influenzae has been confined until now to mutagens that normally produce mainly base pair substitutions. This paper describes the development of a system suitable for detecting frameshift mutations induced by ICR-191. The system involves reversions from thymidine dependence to thymidine independence. Evidence is presented from a comparison of the responses to ICR-191 and to N-methyl-N′-nitro-N-nitrosoguanidine that the system is specific for frameshift mutations. The genetic recombination involved in transformation leads to a marked increase in “spontaneous” reversion of the frameshift mutations but not of the base substitution mutations. Presumably, this is a consequence of mispairing, with consequent change in the number of bases, during the recombination.  相似文献   

5.
Mutations induced by UVB (313-nm) radiation, a wavelength in the region of peak effectiveness for sunlight-induced skin cancer in humans, have been analyzed at the sequence level in simian cells by using a plasmid shuttle vector (pZ189). We find that significant differences exist between the types of mutations induced by this solar wavelength and those induced by nonsolar UVC (254-nm) radiation. Compared with 254-nm radiation, 313-nm radiation induces more deletions and insertions in the region sequenced. In addition, although the types of base substitutions induced by the two wavelengths are broadly similar (in both cases, the majority of changes occur at G-C base pairs and the G-C to A-T transition is predominant), an analysis of the distribution of these base changes within the supF gene following irradiation at 313 nm reveals additional hot spots for mutation not seen after irradiation at 254 nm. These hot spots are shown to arise predominantly at sites of mutations involving multiple base changes, a class of mutations which arises more frequently at the longer solar wavelength. Lastly, we observed that most of the sites at which mutational hot spots arise after both UVC and UVB irradiation of the shuttle vector are also sites at which mutations arise spontaneously. Thus, a common mechanism may be involved in determining the site specificity of mutations, in which the DNA structure may be a more important determinant than the positions of DNA photoproducts.  相似文献   

6.
Oxidative radicals, which are produced during ionizing irradiation of DNA in water, damage the DNA and may result in mutations, which are in general randomly distributed. Alternatively, the addition of transition metal ions, like iron or copper, to DNA in combination with H(2)O(2) and a reducing agent also results in the production of oxidative radicals. Due to binding of the transition metal ions to DNA, the production of these radicals is very local, and results in a mutational spectrum in which the mutations are not randomly distributed. If transition metal ions are complexed to the DNA during irradiation, and react with radiation-induced species such as hydrogen peroxide, site-specific formation of.OH radicals on these sites may occur, leading to the formation of mutational hot spots. This study examines the influence of the presence of traces of iron or copper ions during gamma-irradiation of plasmid DNA in water, on the possible formation of mutational hot spots in the lacI gene. Comparison of the mutational spectra, after irradiation in the presence or in the absence of transition metal ions, shows that there are indeed relatively more positions in the lacI gene where more than one mutation occurs, suggesting formation of mutational hot spots in the presence of transition metal ions. However, the appearance of these hot spots is rather weak. Although in all three mutational spectra G:C to A:T mutations are predominant, there are also some differences between the types of mutations in these spectra. These differences in mutational spectra might reflect the different preferences of iron and copper ions to bind specific sites in the DNA. Indeed, there appears to be a high association of mutations at CC or GG sites in the mutational spectrum in the presence of copper ions, confirming the observation that copper binds preferably at two adjacent guanines in the DNA. It can be concluded from this study that the presence of small amounts of transition metal ions during gamma-irradiation influences the types and distribution of gamma-radiation-induced mutations, although no major mutational hot spots can be observed.  相似文献   

7.
The mismatch repair system of Escherichia coli is known to contribute to the fidelity of the replicational process. This system involves the functions of mutH, mutL, mutS and mutU (uvrD) loci which recognize mispaired bases as a consequence of errors due to the polymerase itself. Chemical modifications of DNA have also been suspected to create mispaired bases which, if the mispaired bases are removed, will lead to mutations by frameshift. Using the pBR322 plasmid DNA modified by the ultimate carcinogen N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) we have investigated this possibility in a forward mutational assay (tetracycline sensitivity). This fluorene derivative has been shown to induce predominantly frameshift mutations. Our results show that: The sensitivity of the deficient strains mutH, mutL and mutS to the AAF adducts is similar to that of the corresponding wild-type strain. However, the mutU strain appears much more sensitive to those adducts although less than a uvrA, B or C-deficient strain. This suggests that the mutU gene product is involved in the repair of AAF adducts. For the four mut deficient strains, and as it was shown with the wild-type strain, AAF adducts induced mutations to tetracycline sensitivity are only observed when the SOS system of the host bacteria is induced by irradiation of the cells prior to transformation with the modified plasmid. The mutation frequencies depend upon the ultraviolet light doses and similar maxima were found for the four mut strains and the corresponding wild-type strain. In agreement with the results obtained with wild-type or uvrA strains we observe that AAF adducts induce mostly frameshift mutations in the mut strains. Two types of hot spots of mutagenesis were described in wild-type and uvrA strains occurring either at repetitive sequences or at sequences of the type 5' G-G-C-G-C-C 3' (NarI restriction enzyme recognition sequence). While the second type of mutational hot spot does exist in the mismatch repair-deficient strains, we observe that the repetitive sequences are no longer hot spots of mutations in these strains, suggesting that the mismatch repair protein complex is involved in the establishment of AAF-induced frameshift mutations at repetitive sequences.  相似文献   

8.
The frequency and specificity of mutations produced in vitro by eucaryotic DNA polymerase-beta have been determined in a forward mutation assay using a 250-base target sequence in M13mp2 DNA. Homogeneous DNA polymerase-beta, isolated from four different sources, produces mutations at a frequency of 4-6%/single round of gap-filling DNA synthesis. DNA sequence analyses of 460 independent mutants resulting from this error-prone DNA synthesis demonstrate a wide variety of mutational events. Frameshift and base substitutions are made at approximately equal frequency and together comprise about 90% of all mutations. Two mutational "hot spots" for frameshift and base substitution mutations were observed. The characteristics of the mutations at these sites suggest that certain base substitution errors result from dislocation of template bases rather than from direct mispair formation by DNA polymerase-beta. When considering the entire target sequence, single-base frameshift mutations occur primarily in runs of identical bases, usually pyrimidines. The loss of a single base occurs 20-80 times more frequently than single-base additions and much more frequently than the loss of two or more bases. Base substitutions occur at many sites throughout the target, representing a wide spectrum of mispair formations. Averaged over a large number of phenotypically detectable sites, the base substitution error frequency is greater than one mistake for every 5000 bases polymerized. Large deletion mutations are also observed, at a frequency more than 10-fold over background, indicating that purified DNA polymerases alone are capable of producing such deletions. These data are discussed in relation to the physical and kinetic properties of the purified enzymes and with respect to the proposed role for this DNA polymerase in vivo.  相似文献   

9.
It is still unclear how frameshift mutations arise at cyclobutane pyrimidine dimers. The polymerase model is commonly used to explain the mechanisms of various mutations. An alternative polymerase-tautomer model was developed for UV-induced mutagenesis. A mechanism was proposed for targeted insertions caused by cis-syn cyclobutane thymine dimers. Targeted insertions are frameshift mutations due to addition of one or more nucleotides in a DNA sequence opposite to a lesion capable of stopping DNA synthesis. Among other factors, cyclobutane pyrimidine dimers can cause targeted insertions. UV irradiation can change the tautomeric form of DNA bases. Five rare tautomeric forms are possible for thymine, and they are stable when the thymine is a component of a cyclobutane dimer. A structural analysis showed that none of the canonical nucleotides can be added opposite to a specific rare thymine tautomer so that hydrogen bonds form between the two bases. A single nucleotide gap is consequently left in the corresponding site of the nascent strand when a specialized or modified DNA polymerase drives SOS or error-prone DNA synthesis on a template containing cis-syn cyclobutane thymine dimers with a base occurring in the rare tautomeric form. If the DNA composition is homogenous within the region, the end of the growing DNA strand may slip to form a complementary pair with the nucleotide adjacent to the dimer according to the Streisinger model, thus producing a loop. A targeted insertion is thereby generated to make the daughter strand longer. Targeted insertions were for the first time assumed to result from the cis-syn cyclobutane thymine dimers wherein one or both of the bases occur in the specific tautomeric form that does not allow the addition and hydrogen bonding of any canonical nucleotide in the opposite position. A model was developed to explain how targeted insertions of one or more nucleotides are caused by cis-syn cyclobutane thymine dimers. Thus, the polymerase-tautomer model can explain the nature and formation of targeted frameshift mutations in addition to hot and cold spots or targeted or untargeted nucleotide substitutions.  相似文献   

10.
Homonucleotide runs in coding sequences are hot spots for frameshift mutations and potential sources of genetic changes leading to cancer in humans having a mismatch repair defect. We examined frameshift mutations in homonucleotide runs of deoxyadenosines ranging from 4 to 14 bases at the same position in the LYS2 gene of the yeast Saccharomyces cerevisiae. In the msh2 mismatch repair mutant, runs of 9 to 14 deoxyadenosines are 1,700-fold to 51,000-fold, respectively, more mutable for single-nucleotide deletions than are runs of 4 deoxyadenosines. These frameshift mutations can account for up to 99% of all forward mutations inactivating the 4-kb LYS2 gene. Based on results with single and double mutations of the POL2 and MSH2 genes, both DNA polymerase epsilon proofreading and mismatch repair are efficient for short runs while only the mismatch repair system prevents frameshift mutations in runs of > or = 8 nucleotides. Therefore, coding sequences containing long homonucleotide runs are likely to be at risk for mutational inactivation in cells lacking mismatch repair capability.  相似文献   

11.
Distance- as well as marker-dependence of genetic recombination of bacteriophage T4 was studied in crosses between rIIB mutants with known base sequences. The notion of a "basic recombination," which is the recombination within distances shorter than hybrid DNA length in the absence of mismatch repair and any marker effects, was substantiated. The basic recombination frequency per base pair can serve as an objective parameter (natural constant) of general recombination reflecting its intensity. Comparative studies of the recombination properties of rIIB mutants with various sequence changes in the mutated sites showed that the main factor determining the probability of mismatch repair in recombination heteroduplexes is the length of a continuous heterologous region. A run of A:T pairs immediately adjoining the mismatch appears to stimulate its repair. In the case of mismatches with DNA strands of unequal length, formed by frameshift mutations, the repair is asymmetric, the longer strand (bulge) being preferentially removed. A pathway for mismatch repair including sequential action of endonuclease VII (gp49)----3'----5' exonuclease (gp43)----DNA polymerase (gp43)----DNA ligase (gp30) was proposed. A possible identity of the recombinational mismatch repair mechanism to that operating to produce mutations via sequence conversion is discussed.  相似文献   

12.
The DNA sequences of 185 independent spontaneous frameshift mutations in the rIIB gene of bacteriophage T4 are described. Approximately half of the frameshifts, including those at hot spot sites, are fully consistent with classical proposals that frameshift mutations are produced by a mechanism involving the misaligned pairing of repeated DNA sequences. However, the remaining frameshifts are inconsistent with this model. Correlations between the positions of two base-pair frameshifts and the bases of DNA hairpins suggest that local DNA topology might influence frameshift mutation. Warm spots for larger deletions share the property of having endpoints adjacent to DNA sequences whose complementarity to sequences a few base-pairs away suggest that non-classical DNA misalignments may participate in deletion mutation. A model for duplication mutation as a consequence of strand displacement synthesis is discussed. In all, 15 frameshifts were complex combinations of frameshifts and base substitutions. Three of these were identical, and have extended homology to a sequence 256 base-pairs away that is likely to participate in the mutational event; the remainder are unique combinations of frameshifts and transversions. The frequency and diversity of complex mutants suggest a challenge to the assumption that the molecular evolution of DNA must depend primarily upon the accumulation of single nucleotide changes.  相似文献   

13.
The mutational spectra generated in AS52 cells at the gpt gene locus by aniline mustards were studied by the isolation of resistant clones and sequencing of the altered gene. A set of four aniline mustards (both mono- and bifunctional) linked to a DNA-affinic 9-aminoacridine (9-AA) carrier was used, together with the untargeted mustards chlorambucil (CHL) and its half-mustard, and the DNA binding carrier, 9-AA. Both 9-AA and CHL were weak cytotoxins, with the DNA-targeted mustards being markedly (10-40-fold) more dose potent, and the bifunctional ones somewhat more toxic than the monofunctional ones. 9-AA produced a different spectrum of mutations to the spontaneous background, with more minor addition events and less base pair substitutions, and showing for the first time that frameshift events so characteristic of 9-AA in bacteria or bacteriophage also occur in mammalian cells. The mutational spectra of the DNA-targeted mustards were quite different both from this and from the lesions caused by the untargeted mustards, which cause largely transition mutations at AT sites (despite a clear preference for formation of N(7)-guanine adducts). There were very few transition mutations, suggesting that the initial O(6)-alkylguanine/O(4)-alkylthymine lesions considered to give rise to these are relatively rare. There was also a lower incidence of complete deletions, usually attributed to DNA cross-links. For the short chain length targeted mustards, which form initial stable adducts largely (95%) at guanine N(7) sites, base pair substitution mutations, predominantly transversions, involved AT and GC base pairs equally. In contrast, the longer chain length targeted mustards, which form >90% of initial adducts at adenine N(1) sites, generated also formed transversion mutations, but these overwhelmingly (24/27) involved AT base pairs.  相似文献   

14.
The mutational spectrum of bleomycin was compared with the spontaneous mutational spectrum in lacZ mouse kidney. Mice were treated with four 20 mg/kg of doses of bleomycin over a two-week period, leading to a mutant fraction several times greater than that of controls. The major class of bleomycin-induced mutations consisted of small deletions, in particular -1 deletions at AT base pairs and hot spots for deletions at 5'-GTC-3' sequences. Smaller, but significant fractions of GC > AT followed by GC > TA substitutions were also observed. In untreated mice, the major class of mutations consisted of GC > AT substitutions followed by GC > TA mutations, and a much smaller fraction of deletions. Other than the specificity of bleomycin for AT base pairs and the 5'-GTC-3' hotspots, the mutational spectrum of bleomycin in mice is similar to that reported for ionizing radiation. However, bleomycin initially mediates the formation of oxidized DNA via reduction of molecular oxygen, as opposed to the radiolysis of water. In this respect mutagenesis induced by bleomycin may be more similar to that induced by endogenous reactive oxygen species (ROS) than mutagenesis induced by ionizing radiation. If bleomycin-induced mutagenesis is an appropriate model for mutagenesis induced by ROS, then, based on the difference between the mutational spectrum of bleomycin and spontaneous mutagenesis, the latter appears not to result predominantly from ROS, at least in mouse kidney.  相似文献   

15.
Mutagenesis by N-acetoxy-N-trifluoroacetyl-4-aminobiphenyl, a reactive form of the human bladder carcinogen 4-aminobiphenyl (ABP), was studied in Escherichia coli virus M13mp10. N-acetoxy-N-trifluoroacetyl-4-ABP-treated DNA containing 140 lesions/duplex genome, when introduced into excision repair-competent cells induced for SOS mutagenic processing, resulted in a 40-fold increase in mutation frequency over background in the lacZ alpha gene fragment. DNA sequence changes were determined for 20 independent mutants. G-C base pairs were the major targets for base pair substitution mutations, although significant mutagenic activity was also observed at certain A-T base pairs. Deletion and frameshift mutations also were found in this sample. The salient feature of this partial "mutational spectrum" was a hotspot that occurred at position 6357 (amino acid 30 of the beta-galactosidase fragment encoded by M13mp10); this A-T to T-A transversion appeared in 6 of the 20 mutants. The property of ABP to mutate A-T base pairs was consistent with the result that N-hydroxy-ABP reverted Salmonella typhimurium strain TA104, which is presumed to revert primarily due to mutations at these sites. The ability of the major carcinogen-DNA adduct formed by ABP in vivo and in vitro, N-(deoxyguanosin-8-yl)-4-aminobiphenyl, to cause base pair substitution mutations was also investigated. This adduct was positioned specifically in the minus strand at position 6270 in duplex M13mp10 DNA. In the presence of the mutagenesis-enhancing plasmid pGW16 and UV induction of SOS mutagenic processing, it was shown that fewer than 0.02% of the adducts resulted in transition or transversion mutations following transfection of DNA into excision-repair competent cells. Similar results were obtained in uvrA and uvrC backgrounds. Although the major adduct did not cause base substitution mutations under these experimental conditions, the contribution of this lesion to the entire spectrum of mutations in the lacZ alpha fragment seems likely.  相似文献   

16.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of plasmid-encoded FLP protein and two recombination sites on the plasmid. The recombination site possesses a specific orientation, which is determined by an asymmetric 8-base pair spacer sequence separating two 13-base pair inverted repeats. The outcome or directionality of site-specific recombination is defined by the alignment of two sites in the same orientation during the reaction. Sites containing point mutations or 1-base pair insertions or deletions within the spacer generally undergo recombination with unaltered sites at reduced levels. In contrast, recombination between the two identical mutant sites (where homology is restored) proceeds efficiently in all cases. Sites containing spacer sequences of 10 base pairs or more are nonfunctional under all conditions. A recombination site in which 5 base pairs are changed to yield an entirely symmetrical spacer sequence again recombines efficiently, but only with an identical site. This reaction, in addition, produces a variety of new products which can only result from random alignment of the two sites undergoing recombination, i.e. the reaction no longer exhibits directionality. These and other results demonstrate that both the efficiency and directionality of site-specific recombination is dependent upon homology between spacer sequences of the two recombining sites. This further implies that critical DNA-DNA interactions between the spacer region of the two sites involved in the reaction occur at some stage during site-specific recombination in this system. The specific spacer sequence itself appears to be unimportant as long as homology is maintained; thus, these sequences are probably not involved in recognition by FLP protein.  相似文献   

17.
D Burnouf  R P Fuchs 《Biochimie》1985,67(3-4):385-389
The chemical carcinogen, N-2-acetylaminofluorene (AAF) when bound covalently to DNA induces a majority (greater than 90%) of frameshift mutations. The mutations occur with high frequencies at defined sequences (i.e. mutation hot spots). Two classes of mutation hot spots were found: at repetitive sequences and at specific non-repetitive sequences. Mutations at the repetitive sequences depend upon a functional umuC gene whereas mutations at specific non-repetitive sequences are umuC-independent. The first discovered sequence of this class is the NarI restriction enzyme recognition sequence (5'GGCGCC3'). In an attempt to define a family of such sequences we constructed a related sequence 5'GCGCGC3' within the tetracycline resistance gene of pBR322. This sequence was also found to be an--AAF induced--2 frameshift mutation hot spot in both wild type and umuC strains.  相似文献   

18.
Summary The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene induces mainly frameshift mutations, which occur within two types of sequences (mutation hot spots): –1 frameshift mutations within contiguous guanine sequences and –2 frameshift mutations within alternating GC sequences such as the NarI and BssHII restriction site sequences. We have investigated the genetic control of mutagenesis at these sequences by means of a reversion assay using plasmids pW17 and pX2, which contain specific targets for contiguous guanine and alternating GC sequences, respectively. Our results suggest that mutations at these hot spot sequences are generated by two different genetic pathways, both involving induction of SOS functions. The two pathways differ both in their LexA-controlled gene and RecA protein requirements. In the mutation pathway that acts at contiguous guanine sequences, the RecA protein participates together with the umuDC gene products. In contrast, RecA is not essential for mutagenesis at alternating GC sequences, except to cleave the LexA repressor. The LexA-regulated gene product(s), which participate in this latter mutational pathway, do not involve umuDC but another as yet uncharacterized inducible function. We also show that wild-type RecA and RecA430 proteins exert an antagonistic effect on mutagenesis at alternating GC sequences, which is not observed either in the presence of activated RecA (RecA*), RecA730 or RecA495 proteins, or in the complete absence of RecA as in recA99. It is concluded that the –1 mutation pathway presents the same genetic requirements as the pathway for UV light mutagenesis, while the –2 mutation pathway defines a distinct SOS pathway for frameshift mutagenesis.  相似文献   

19.
Spontaneous DNA damage can be dealt with by multiple repair/bypass pathways that have overlapping specificities. We have used a frameshift reversion assay to examine spontaneous mutations that accumulate in yeast strains defective for the high-fidelity nucleotide excision repair or recombination pathways. In contrast to the simple frameshift mutations that occur in wild-type strains, the reversion events in mutant strains are often complex in nature, with the selected frameshift mutation being accompanied by one or more base substitutions. Genetic analyses demonstrate that the complex events are dependent on the Pol zeta translesion polymerase, thus implicating the DNA damage bypass activity of low-fidelity translesion polymerases in hypermutation phenomena.  相似文献   

20.
Class switch recombination (CSR) and somatic hypermutation (SHM) are mechanistically related processes that share common key factors such as activation-induced cytidine deaminase. We have previously shown a role for ATM (mutated in ataxia-telangiectasia) in CSR. In this paper we show that the frequency, distribution, and nature of base pair substitutions in the Ig variable (V) heavy chain genes in ataxia-telangiectasia patients are largely similar to those in normal donors, suggesting a normal SHM process. Characterization of the third complementarity-determining region in B cells from ataxia-telangiectasia patients also shows a normal V(D)J recombination process. SHM-like mutations could be identified in the switch (S) mu region (up to several hundred base pairs upstream of the S mu -S(alpha) breakpoints) in normal in vivo switched human B cells. In the absence of ATM, mutations can still be found in this region, but at less than half the frequency of that in normal donors. The latter mutations are mainly due to transitions (86% compared with 58% in controls) and are biased to A or T nucleotides. An ATM-dependent mechanism, different from that generating SHM in V genes, is therefore likely to be involved in introducing SHM-like mutations in the S region. ATM may thus be one of the factors that is not shared by the CSR and SHM processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号