首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the laboratory rat (Rattus norvegicus) is an indispensable experimental animal for biomedical research and drug development, the lack of embryonic stem cell lines hampers gene-knockout studies. Here we report the successful generation of insertional mutant rats using the Sleeping Beauty (SB) transposon system. This would benefit a variety of biomedical research fields for which the rat model is better suited than the mouse model.  相似文献   

2.
The laboratory rat, Rattus norvegicus, and the laboratory mouse, Mus musculus, are key animal models in biomedical research. A deeper understanding of the genetic interrelationsships between Homo sapiens and these two rodent species is desirable for extending the usefulness of the animal models. We present comprehensive rat-human and rat-mouse comparative maps, based on 1090 gene homology assignments available for rat genes. Radiation hybrid, FISH, and zoo-FISH mapping data have been integrated to produce comparative maps that are estimated to comprise 83-100% of the conserved regions between rat and mouse and 66-82% of the conserved regions between rat and human. The rat-mouse zoo-FISH analysis, supported by data for individual genes, revealed nine previously undetected conserved regions compared to earlier reports. Since there is almost complete genome coverage in the rat-mouse comparative map, we conclude that it is feasible to make accurate predictions of gene positions in the rat based on gene locations in the mouse.  相似文献   

3.
Rat models have been used for many decades to study physiological and pathophysiological mechanisms. Prior to the release of the rat genome and new technologies for targeting gene manipulation, the rat had been the underdog in the genomics era, despite the abundance of physiological data compared to the mouse. The overarching goal of biomedical research is to improve health and advance medical science. Translating human disease gene discovery and validation in the rat, through the use of emerging technologies and integrated tools and databases, is providing power to understand the genetics, environmental influences, and biology of disease. In this review we briefly outline the rat models, bioinformatics tools, and technologies that are changing the landscape of translational research. The strategies used to translate disease traits to genes to function, and, ultimately, to improve human health is discussed. Finally, our perspective on how rat models will continue to positively impact biomedical research is provided.  相似文献   

4.
Rat liver-targeted naked plasmid DNA transfer by tail vein injection   总被引:10,自引:0,他引:10  
High levels of foreign gene expression in mouse hepatocytes can be achieved by "hydrodynamics-based transfection," the rapid injection of a large volume of a naked deoxyribonucleic acid (DNA) solution into the tail vein. Rats are more tolerant of the frequent phlebotomies required for monitoring blood parameters than mice and, thus, are more suitable for some biomedical research. Recently, we demonstrated that hydrodynamics-based transfection can also be used to deliver naked plasmid DNA into the normal rat, which is more than 10 times larger than the mouse. We performed the tail vein injection using a syringe with a winged needle equipped with an external tube. Injection of a lac Z expression plasmid, pCAGGS-lac Z by this technique resulted in the exclusive detection of beta-galactosidase in the liver. We also injected a rat erythropoietin (Epo) expression plasmid, pCAGGS-Epo (800 microg). Maximal Epo gene expression was achieved when a 25-mL injection volume (approx 100 mL/kg body wt) was transferred within 15 s.  相似文献   

5.
Cloning and expression of the rat interleukin-3 gene.   总被引:6,自引:2,他引:4       下载免费PDF全文
Genomic clones carrying the rat interleukin-3 (IL-3) gene have been isolated and the nucleotide sequence of the gene determined. Alignment of this sequence with that of the mouse IL-3 gene has allowed the structure of the rat IL-3 gene to be deduced. The intron-exon boundaries are conserved and extensive nucleotide homology (approx 90%) is present in the 5' flanking region and the portion of the gene coding for the signal peptide. Several proposed regulatory sequences are conserved and an analogous element to the tandem repeat in intron 2 of the mouse gene is also present. The predicted amino acid sequence for mature rat IL-3 shows surprisingly low homology (54%) with its murine counterpart, although all four cysteine residues are conserved. The rat IL-3 gene was expressed in monkey COS-1 cells and colony assays established that rat IL-3 is a multi-lineage haemopoietic growth regulator. There was little cross-reactivity of the respective IL-3 species on mouse and rat bone marrow cells suggesting that rat IL-3, in concert with its receptor, has evolved significantly away from the mouse IL-3/receptor system.  相似文献   

6.
The rat is a model of choice in biomedical research for over a century. Currently, the rat presents the best “functionally” characterized mammalian model system. Despite this fact, the transgenic rats have lagged behind the transgenic mice as an experimental model of human neurodegenerative disorders. The number of transgenic rat models recapitulating key pathological hallmarks of Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, or human tauopathies is still limited. The reason is that the transgenic rats remain more difficult to produce than transgenic mice. The gene targeting technology is not yet established in rats due to the lack of truly totipotent embryonic stem cells and cloning technology. This extremely powerful technique has given the mouse a clear advantage over the rat in generation of new transgenic models. Despite these limitations, transgenic rats have greatly expanded the range of potential experimental approaches. The large size of rats permits intrathecal administration of drugs, stem cell transplantation, serial sampling of the cerebrospinal fluid, microsurgical techniques, in vivo nerve recordings, and neuroimaging procedures. Moreover, the rat is routinely employed to demonstrate therapeutic efficacy and to assess toxicity of novel therapeutic compounds in drug development. Here we suggest that the rat constitutes a slightly underestimated but perspective animal model well-suited for understanding the mechanisms and pathways underlying the human neurodegenerative disorders.  相似文献   

7.
8.
9.
Reciprocal chromosome painting between mouse and rat using complete chromosome probe sets of both species permitted us to assign the chromosomal homology between these rodents. The comparative gene mapping data and chromosome painting have a better than 90% correspondence. The reciprocal painting results graphically show that mouse and rat have strikingly different karyotypes. At least 14 translocations have occurred in the 10-20 million years of evolution that separates these two species. The evolutionary rate of chromosome translocations between these two rodents appears to be up to 10 times greater than that found between humans and cats, or between humans and chimpanzees, where over the last 5-6 million years just one translocation has occurred. Outgroup comparison shows that the mouse genome has incorporated at least three times the amount of interchromosomal rearrangements compared to the rat genome. The utility of chromosome painting was also illustrated by the assignment of two new chromosome homologies between rat and mouse unsuspected by gene mapping: between mouse 11 and rat 20 and between mouse 17 and rat 6. We conclude that reciprocal chromosome painting is a powerful method, which can be used with confidence to chart the genome and predict the chromosome location of genes. Reciprocal painting combined with gene mapping data will allow the construction of large-scale comparative chromosome maps between placental mammals and perhaps other animals.  相似文献   

10.
Urotensin II (UII) has been reported as the most potent known vasoconstrictor. While rat and mouse orthologs of UII precursor protein have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack typical processing sites for their mature peptides. In the present study, we isolated a novel peptide, UII-related peptide (URP), from the extract of the rat brain as the sole immunoreactive substance to anti-UII antibody; the amino acid sequence of the peptide was determined as ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and revealed that the sequences of mouse and human URP peptides are the same as that for rat URP. Prepro-URP gene is expressed in several rat tissues such as those of the thymus, spleen, testis, and spinal cord, although with lower levels than the prepro-UII gene. In the human, the prepro-URP gene is expressed comparably to prepro-UII in several tissues except the spinal cord. URP was found to bind and activate the human or rat UII receptors (GPR14) and showed a hypotensive effect when administered to anesthetized rats. These results suggest that URP is the endogenous and functional ligand for UII receptor in the rat and mouse, and possibly in the human. We also describe the preparation of specific monoclonal antibodies raised against UII peptide and the establishment of a highly sensitive enzyme immunoassay system for UII peptides.  相似文献   

11.
Infusion of experimental compounds into the vascular system of rodents and the need to collect blood and other biological fluids from small animals comprise an area of emerging importance to biomedical research and drug discovery and development. The advances in the development of transgenic rodents coupled with technical progress in the manufacture and commercial availability of various catheters, swivels, tethers, infusion pumps, and sample collection systems that are described have enabled biomedical scientists to miniaturize vascular infusion and sample collection systems previously used in animal species larger than the rat or mouse. Use of these advanced, miniature vascular infusion systems in rodents is possible only when careful planning of experimental design, expert surgical technique, adequate postoperative care, and fundamental animal welfare considerations are meticulously taken into consideration. Use of these vascular infusion systems in rodents promotes animal welfare and scientific progress through the reduction and refinement of animal models.  相似文献   

12.
A putative proximal promoter was defined previously for the mouse glucagon receptor (GR) gene. In the present study, a distal promoter was characterized upstream from a novel non-coding exon revealed by the 5'-rapid amplification of cDNA ends from mouse liver tissue. The 5'-flanking region of the mouse GR gene was cloned up to 6 kb and the structural organization was compared to the 5' untranslated region of the rat gene cloned up to 7 kb. The novel exon, separated by an intron of 3.8 kb from the first coding exon, displayed a high homology (80%) with the most distal of the two untranslated exons found in the 5' region of the rat GR gene. The mouse distal promoter region, extending up to -1 kb from the novel exon, displayed 85% identity with the rat promoter. Both contain a highly GC-rich sequence with five putative binding sites for Sp1, but no consensus TATA or CAAT elements. To evaluate basal promoter activities, 5'-flanking sequences of mouse or rat GR genes were fused to a luciferase reporter gene and transiently expressed in a mouse and in a rat cell line, respectively or in rat hepatocytes. Both mouse and rat distal promoter regions directed a high level of reporter gene activity. Deletion of the Sp1 binding sites region or mutation of the second proximal Sp1 sequence markedly reduced the distal promoter activity of the reporter gene. The mouse proximal promoter activity was 2- to 3-fold less than the distal promoter, for which no functional counterpart was observed in the similar region of the rat gene.  相似文献   

13.
PiggyBac system has been shown to have a high efficiency to mediate gene transfer. However, there are no reports on its efficiency to mediate multiplex transgenes in mouse embryonic stem cells. Here we first established an immortalized feeder cell line by introducing four antibiotic resistance genes simultaneously into the original SNL 76/7 feeder cell line utilizing the PiggyBac system. This is the feeder cell line with the most diverse types of antibiotic resistance genes reported so far, which will enable researchers to perform simultaneous multiplex gene transfer or gene targeting experiments in ES cells. With such feeder cell line, we were able to quantitatively characterize the transposition efficiency of PiggyBac system in mouse ES cells using five transposons carrying different inducible fluorescence proteins and antibiotic resistance genes, and the efficiency ranged from about 2% for one transposon to 0.5% for five transposons. The highly efficient multiplex gene transfer mediated by PiggyBac will no doubt provide researchers with more choices in biomedical research and development.  相似文献   

14.
15.
16.
Tong C  Huang G  Ashton C  Wu H  Yan H  Ying QL 《遗传学报》2012,39(6):275-280
  相似文献   

17.
While establishing a new mouse strain, we discovered a novel mutant mouse that exhibited ataxia. Mating experiments showed that the mutant phenotype was due to a single autosomal recessive gene, which we have termed joggle (gene symbol: jog). The ataxia becomes apparent around postnatal day 12, when the mice first attempt to walk, and worsens thereafter. The life span of the mutant mouse is comparable to that of the wild-type mouse. After 21 days of age, the cerebellum weights of the jog/jog mice are significantly lower than those of the wild-type mice. These observations indicate that jog/jog mutant mice could be useful models for biomedical research.  相似文献   

18.
The gene for tubular basement membrane (Tbm) antigen in the rat has been mapped relative to other markers in the first linkage group, and a polymorphic locus for a submaxillary gland protease, Tamase-1, has been identified. The hair-loss mutation fuzzy has also been mapped and occupies a position which is similar to that of the frizzy gene in the mouse. There are now at least five, and possibly six, genetic loci distributed over more than 30 centimorgans in the first linkage group of the rat which map in positions of approximate homology on the seventh chromosome of the mouse.  相似文献   

19.
Kamp PB  Ragg H 《Gene》1999,229(1-2):137-144
The genomic organization of the heparin cofactor II (HCII) gene from rat and mouse was investigated and compared with their human counterpart. The genes share a common core structure consisting of five exons interrupted by four introns, but the mouse and rat gene reveal individual additional features. A unique differentially spliced exon is present in the 5'-untranslated region of the rat gene, which most probably has arisen de novo by point mutations in intronic sequences of the ancestor gene. In the mouse HCII gene, a novel intron/exon boundary has been created due to the presence of an additional DNA segment, which simultaneously provides a 3'-splice site and a polypyrimidine stretch leading to an alternatively used exon of increased size. Our data suggest that, in contrast to most other mammalian genes, the exon/intron pattern of the gene coding for HCII is in dynamic evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号