首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic Studies of Mouse Brain Transketolase   总被引:3,自引:3,他引:0  
Abstract: The activity of transketolase in mouse brain was 5.7 nmol/min/mg protein measured by an enzyme-coupled spectrophotometric assay. The apparent Km for ribose-5-phosphate was 330 μ M , for d -xylulose-5-phosphate was 120 μ M , and for thiamine pyrophosphate was 7 μ M . However, thiamine pyrophosphate remained tightly bound to transketolase in homogenates in which it dissociated completely from another thiamine pyrophosphate- dependent enzyme, the pyruvate dehydrogenase complex. These data suggest that loss of transketolase activity is likely to be a later consequence of thiamine deficiency in mammalian brain than is decreased activity of pyruvate dehydrogenase complex.  相似文献   

2.
The influence of transketolase substrates on the interaction of apotransketolase with its coenzyme thiamine diphosphate (TDP) and on the stability of the reconstituted holoenzyme was studied. Donor substrates increased the affinity of the coenzyme for transketolase, whereas acceptor substrate did not. In the presence of magnesium ions, the active centers of transketolase initially identical in TDP binding lose their equivalence in the presence of donor substrates. The stability of transketolase depended on the cation type used during its reconstitution--the holoenzyme reconstituted in the presence of calcium ions was more stable than the holoenzyme produced in the presence of magnesium ions. In the presence of donor substrate, the holoenzyme stability increased without depending on the cation used during the reconstitution. Donor substrate did not influence the interaction of apotransketolase with the inactive analog of the coenzyme N3'-pyridyl thiamine diphosphate and did not stabilize the transketolase complex with this analog. The findings suggest that the effect of the substrate on the interaction of the coenzyme with apotransketolase and on stability of the reconstituted holoenzyme is caused by generation of 2-(alpha,beta-dihydroxyethyl)thiamine diphosphate (an intermediate product of the transketolase reaction), which has higher affinity for apotransketolase than TDP.  相似文献   

3.
The nature of the thiamine diphosphate binding proteins from rat liver hyaloplasm was studied. When [14C]thiamine was used as a marker, a [14C]thiamine diphosphate-containing electrophoretically homogeneous protein preparation was isolated from the liver soluble fraction and classified as transketolase. No other non-enzymatic proteins which bind thiamine diphosphate and can serve as substrates in the reaction of thiamine diphosphate synthesis in the hyaloplasm were found. It was shown that the phosphate group is transferred by rat liver thiamine diphosphate kinase to the free (but not to the protein-bound) thiamine diphosphate as it was believed earlier.  相似文献   

4.
The effect of p-hydroxyphenylpyruvate, a natural analogue of transketolase substrate, on the catalytic activity of the enzyme was investigated. p-Hydroxyphenylpyruvate proved to be a reversible and competitive inhibitor of transketolase with respect to substrate; it was also able to displace thiamine diphosphate from holotransketolase. The data suggest that p-hydroxyphenylpyruvate participates in the regulation of tyrosine biosynthesis by influencing the catalytic activity of transketolase.  相似文献   

5.
The hepatitis-like changes were induced in the liver of albino female rats weighing 120-150 g and fed on the appropriate vivarium diet by single parenteral administration of hydrochloride galactosamine in a dose of 0.9 or 1.8 mmol per 1 kg of body weight. The thiamine diphosphate level in the cytosol fraction of the liver decreased 24 h after the preparation administration, the same in blood but with the higher dose used. The activity of pyruvate dehydrogenase, a thiamine diphosphate dependent enzyme, decreased similarly. The cytosol transketolase activity lowered by 38-39%. The coenzyme biosynthesis disturbance due to a fall by 49-58% in the thiamine pyrophosphatase activity is considered to be responsible for hydrochloride galactosamine-induced decrease in the thiamine diphosphate pool. Specificity of the thiamine diphosphate pool disturbance and discoordination of thiamine diphosphate dependent enzymes in the liver are observed under administration of hydrochloride galactosamine.  相似文献   

6.
Kinetic analysis permitted to determine two sites of hydroxythiamine diphosphate binding in apotransketolase. The Ki values for these sites differed significantly: (7-22) X 10(-9) M and (13.0-19.7) X 10(-8) M. The rate of thiamine diphosphate turnover within holotransketolase in rat liver tissue was studied by the radioisotope method, using [14C]thiamine as a labeled precursor. The absolute values of half-substitution time and the rate constant of coenzyme degradation in the transketolase molecule are close to those for the protein moiety of the enzyme and are 153 hours and 0.108 days-1, respectively. In vivo rat liver transketolase exists in a substituted alpha-carbanion form. Within the holoenzyme molecule substitution of thiamine diphosphate for hydroxythiamine diphosphate does not influence the formation of an intermediate alpha-carbanion form of the enzyme.  相似文献   

7.
Possible xenobiotic interactions with thiamine were studied in salmonid fish, by repeatedly injecting two model substances, paraquat and menadione, into juvenile rainbow trout (Oncorhynchus mykiss). These two substances were chosen because of their well-known ability to redox-cycle and cause depletion of NADPH in several biological systems. Depletion of NADPH increases metabolism through the pentose-phosphate shunt and may thereby increase the need for thiamine diphosphate by heightened transketolase activity. A special food was produced with lower thiamine content than commercial food, usually enriched with thiamine, which could mask an effect on the thiamine level. After 9 weeks of exposure, glucose-6-phosphate dehydrogenase, transketolase, glutathione reductase and ethoxyresorufin O-deethylase were analysed in liver and kidney cellular sub-fractions as well as analysis of total thiamine concentrations in liver, kidney and muscle. The results showed that paraquat caused a large increase in hepatic glutathione reductase activity and induced hepatic glucose-6-phosphate dehydrogenase activity, i.e., the rate-limiting enzyme in the oxidative part of the pentose-phosphate shunt. Despite this paraquat exposure did not affect transketolase activity and total thiamine concentration.  相似文献   

8.
In this work, we investigated the rate of formation of the central intermediate of the transketolase reaction with thiamine diphosphate (ThDP) or 4′-methylamino-ThDP as cofactors and its stability using stopped-flow spectroscopy and circular dichroism (CD) spectroscopy. The intermediates of the transketolase reaction were analyzed by NMR spectroscopy. The kinetic stability of the intermediate was shown to be dependent on the state of the amino group of the coenzyme. The rates of the intermediate formation were the same in the case of the native and methylated ThDP, but the rates of the protonation or oxidation of the complex in the ferricyanide reaction were significantly higher in the complex with methylated ThDP. A new negative band was detected in the CD spectrum of the complex transketolase—4′-methylamino-ThDP corresponding to the protonated dihydroxyethyl-4′-methylamino-ThDP released from the active sites of the enzyme. These data suggest that transketolase in the complex with the NH2-methylated ThDP exhibits dihydroxyethyl-4′-methylamino-ThDP-synthase activity. Thus, the 4′-amino group of the coenzyme provides kinetic stability of the central intermediate of the transketolase reaction, dihydroxyethyl-ThDP.  相似文献   

9.
1. The activities of 2-oxoglutarate dehydrogenase, transketolase, thiamine pyrophosphokinase and thiamine triphosphatase and the concentrations of thiamine phosphates were almost the same between rat extensor digitorum longus and soleus muscles at 2 weeks of age. 2. These enzyme activities changed after 3 weeks of age in a different way depending on the muscle phenotype. 3. Thiamine diphosphate level and the activity of 2-oxoglutarate dehydrogenase increased only in soleus muscle and thiamine triphosphate level increased only in extensor digitorum longus during development.  相似文献   

10.
About 500 strains of dextranase producing microorganisms were examined in detail for pH- activity and enzyme stability. A gram positive bacterium identified as belonging to the genus Brevibacterium was found to produce alkaline dextranase. Maximal dextranase synthesis was obtained when grown aerobically at 26°C for 3 days in a medium containing 1 % dextran, 2% ethanol, 1 % polypeptone and 0.05 % yeast extract together with trace amounts of inorganic salts.

Brevibacterium dextranase had an optimum pH of 8.0 for activity at 37°C and an optimal temperature at 53°C at pH 7.5. The enzyme was quite stable over the range of pH 5.0 to 10.5 on 24 hr incubation at 37°C, especially on alkaline pH. The enzyme was also heat stable at 60°C for 10 min.  相似文献   

11.
An alkaline protease secreting Haloalkaliphilic bacterium (Gene bank accession number EU118361) was isolated from the Saurashtra Coast in Western India. The alkaline protease was purified by a single step chromatography on phenyl sepharose 6 FF with 28% yield. The molecular mass was 40 kDa as judged by SDS-PAGE. The enzyme displayed catalysis and stability over pH 8–13, optimally at 9–11. It was stable with 0–4 M NaCl and required 150 mM NaCl for optimum catalysis at 37 °C; however, the salt requirement for optimal catalysis increased with temperature. While crude enzyme was active at 25–80 °C (optimum at 50 °C), the purified enzyme had temperature optimum at 37 °C, which shifted to 80 °C in the presence of 2 M NaCl. The NaCl not only shifted the temperature profile but also enhanced the substrate affinity of the enzyme as reflected by the increase in the catalytic constant (K cat). The enzyme was also calcium dependent and with 2 mM Ca+2, the activity reached to maximum at 50 °C. The crude enzyme was highly thermostable (37–90 °C); however, the purified enzyme lost its stability above 50 °C and its half life was enhanced by 30 and sevenfold at 60 °C with 1 M NaCl and 50 mM Ca+2, respectively. The activity of the enzyme was inhibited by PMSF, indicating its serine type. While the activity was slightly enhanced by Tween-80 (0.2%) and Triton X-100 (0.05%), it marginally decreased with SDS. In addition, the enzyme was highly stable with oxidizing-reducing agents and commercial detergents and was affected by metal ions to varying extent. The study assumes significance due to the enzyme stability under the dual extremities of pH and salt coupled with moderate thermal tolerance. Besides, the facts emerged on the enzyme stability would add to the limited information on this enzyme from Haloalkaliphilic bacteria.  相似文献   

12.
The crystal structure of Saccharomyces cerevisiae transketolase, a thiamine diphosphate dependent enzyme, has been determined to 2.5 A resolution. The enzyme is a dimer with the active sites located at the interface between the two identical subunits. The cofactor, vitamin B1 derived thiamine diphosphate, is bound at the interface between the two subunits. The enzyme subunit is built up of three domains of the alpha/beta type. The diphosphate moiety of thiamine diphosphate is bound to the enzyme at the carboxyl end of the parallel beta-sheet of the N-terminal domain and interacts with the protein through a Ca2+ ion. The thiazolium ring interacts with residues from both subunits, whereas the pyrimidine ring is buried in a hydrophobic pocket of the enzyme, formed by the loops at the carboxyl end of the beta-sheet in the middle domain in the second subunit. The structure analysis identifies amino acids critical for cofactor binding and provides mechanistic insights into thiamine catalysis.  相似文献   

13.
Abstract— It is shown that transketolase activities in red blood cells and whole brain of normal and thiamine-deficient rats correlate well with heart frequencies.
The effect of thiamine depletion on the levels of acetylcoenzyme A (acetyl-CoA) and acetylcholine (ACh), and on the activities of pyruvate dehydrogenase, choline acetyl-transferase and acetylcholine esterase was studied in whole brains of thiamine-deficient, thiamine-supplemented ad libitum and pair-fed rats. The concentrations of acetyl-CoA and ACh decreased in thiamine-deficient brains by 42 and 35 per cent, respectively.
Total pyruvate dehydrogenase activity did not change during vitamin B1 deficiency. The 'resolved' enzyme, reconstituted with thiamine diphosphate, had an association constant of 5.4 × 10−6 m . Choline acetyltransferase and acetylcholine esterase activities remained unchanged in thiamine deficiency.
Possible mechanisms which could explain the reduced Ach levels in vitamin B1 deficiency are discussed.  相似文献   

14.
Here we report the characterization of the type-1 isopentenyl diphosphate isomerase derived from Halobacterium sp. NRC-1. The expressed purified enzyme showed maximum isomerase activity in the presence of 1 M NaCl at 37 °C at pH 6.0. This type-1 enzyme appears to be the first for which the Co2+ ion is required for activity.  相似文献   

15.
The effects of various treatments, which affect membrane structure, on microsomal thiamine diphosphatase and thiamine triphosphatase activities of rat brain, were examined. The treatment of micorosomes at alkaline pH caused a 2-fold activation of the thiamine diphosphatase, this being related to a change in membrane structure which was evidenced by a decrease of the turbidity of the microsomal suspension. Repeated freezing and thawing after hypo-osmotic treatment also increased the activity of microsomal thiamine diphosphatase. In addition, the thiamine diphosphatase activity was enhanced by treatment of the microsomes with phospholipase C or acetone. This lipid depletion resulted in a marked reduction in the apparent Km value of the thiamine diphosphatase with a corresponding loss in heat stability of the enzyme. We found further that brain thiamine diphosphatase was solubilized by Triton X-100. This decreased the phospholipid content in the preparation, but did not affect the apparent Km value and heat stability of the enzyme. In contrast with thiamine diphosphatase, thiamine triphosphatase was inactivated by treatment at alkaline pH or with acetone. However, treatment with phospholipase C did not affect the activity of thiamine triphosphatase.  相似文献   

16.
1. Aerobic incubation at 37° of rat brain-cortex slices in Krebs–Ringer phosphate medium containing glucose and labelled thiamine results in accumulation in the tissue of labelled thiamine and labelled thiamine phosphates. The concentration of the labelled thiamine in the tissue cell water increases with increase of external labelled thiamine concentration in an approximately linear manner, the concentration ratio for labelled thiamine (tissue:medium) exceeding unity with low external thiamine concentrations (e.g. 0·2μm) and diminishing to about unity as the external thiamine concentration is increased to 1μm. The concentration of labelled phosphorylated thiamine in the tissue is at least double that of the labelled thiamine present and its amount increases with increase of external thiamine concentration. Labelled phosphorylated thiamine appears in the medium, its amount being about one-fifteenth of that in the tissue. Phosphorylation of thiamine in the tissue proceeds during incubation for 3hr. and, with an external labelled thiamine concentration of 0·2μm, about 48% conversion of thiamine takes place. 2. In the presence of ouabain (0·1mm), which does not inhibit thiamine phosphorylation in rat brain extract, there is a fall in the uptake of labelled thiamine by brain-cortex slices and the concentration ratio for the labelled thiamine (tissue:medium) falls to below unity. Anaerobiosis, lack of Na+ or the presence of Amprol (0·01mm) leads to marked inhibition of thiamine phosphorylation, and the concentration ratio for labelled thiamine (tissue:medium) falls to about unity. The facts lead to the conclusion that thiamine is conveyed into the brain cell against a concentration gradient by an energy-assisted process mediated by a membrane carrier. Pyri-thiamine is a marked inhibitor of thiamine phosphorylation in brain extract. 3. Thiamine monophosphate and thiamine diphosphate inhibit thiamine phosphorylation in brain extract. They diminish `total' thiamine (free and phosphorylated) uptake into brain-cortex slices and inhibit the transport of thiamine into the brain cell, possibly by competition for the carrier. 4. Phosphorylation of labelled thiamine in brain extract is brought about not only by adenosine triphosphate (in the presence of Mg2+) but apparently by adenosine diphosphate and uridine triphosphate.  相似文献   

17.
Ecologically important concentrations of vitamin B12 and thiamine in charcoal-treated, filter-sterilized seawater stored in the dark at 5, 18, 28, and 37 C generally did not change over a 9-week period, although there was some breakdown of B12 at 37 C. Biotin activity under similar conditions generally increased, indicating its decomposition to more active products. Solutions kept at–20 C had unchanged vitamin activity. B12 and biotin in seawater exposed to sunlight were rapidly destroyed. The course of thiamine destruction in sunlight indicated a breakdown to a stable, biologically active product(s)).  相似文献   

18.
Studies on ATP     
The experiments described in this paper serve as a contribution to the solution of the discrepancies which exist in the assay of ATP:thiamine diphosphate phosphotransferase activity (EC 2.7.4.15), presently in use as a tool for the diagnosis of Leigh's disease (SNE, subacute necrotizing encephalomyelopathy). The results obtained with this phosphotransferase assay can, in part, be explained by the presence of thiamine triphosphate (ThTP) in the preparation of thiamine diphosphate (ThDP) used as a substrate, by the inhibition by ATP of the ThTP phosphohydrolase activity, present in fractions of rat brain homogenates, and by the stimulation by ThDP of the ATPase activity. When [2-14C-thiazole]thiamine was used for the synthesis of [14C]ThTP in fractions of rat brain, it was found that after chromatographic separation of thiamine and its phosphates,14C radio-activity could be demonstrated in the ThTP fractions, even in the absence of an enzyme source. Probably a complex is formed between [14C]thiamine and a phosphate ester which behaves chromatographically as ThTP. It is concluded that the assay system for the measurement of ThTP synthesis in its present form is, in our hands, not suitable for diagnostic purposes.  相似文献   

19.
20.
Until recently it was assumed that the transketolase-like protein (TKTL1) detected in the tumor tissue, is catalytically active mutant form of human transketolase (hTKT). Human TKT shares 61% sequence identity with TKTL1. And the two proteins are 77% homologous at the amino acid level. The major difference is the absence of 38 amino acid residues in the N-terminal region of TKTL1. Site-specific mutagenesis was used for modifying hTKT gene; the resulting construct had a 114-bp deletion corresponding to a deletion of 38 amino acid residues in hTKT protein. Wild type hTKT and mutant variant (DhTKT) were expressed in Escherichia coli and isolated using Ni-agarose affinity chromatography. We have demonstrated here that DhTKT is devoid of transketolase activity and lacks bound thiamine diphosphate (ThDP). In view of these results, it is unlikely that TKTL1 may be a ThDP-dependent protein capable of catalyzing the transketolase reaction, as hypothesized previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号