首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immunoreactive ACTH and beta-endorphin (beta-End) were localized in the brain and pituitaries of normal and colchicine-treated rats, using the immunoperoxidase method at the light microscopic level. On adjacent serial 5-micron paraffin sections of anterior pituitaries, both ACTH and beta-End could be found in the same cells. On adjacent 5-micron paraffin sections of brains of colchicine-treated rats, both ACTH and beta-End could be found in the same perikarya of hypothalamic arcuate nucleus neurons. It appeared that all perikarya containing beta-End contained ACTH as well, suggesting that neurons producing beta-End also produce ACTH. Pathways of ACTH fibers corresponded to pathways of beta-End fibers. These findings suggest that the synthesis, and transport, of ACTH and beta-End are linked in the brain as well as in the pituitary, possibly through a common precursor.  相似文献   

2.
Distribution of adrenomedullin (AM)-containing perivascular nerve fibers was studied in rat mesenteric arteries. Many fibers containing AM-like immunoreactivity (LI) were observed in the adventitia. AM-LI fibers were abolished by cold storage denervation or capsaicin but not 6-hydroxydopamine. Double immunostainings showed colocalization of AM-LI with calcitonin gene-related peptide (CGRP)-LI. The dorsal root ganglia had many AM-positive cells and AM mRNA detected by RT-PCR. Electron microscopy study revealed high proportions of immunogold labeling for AM and colocalization of both AM-LI and CGRP-LI in unmyelinated nerve axons. These results suggest that AM-containing perivascular nerves are distributed in the rat mesenteric artery.  相似文献   

3.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

4.
The immunocytochemical localization of corticotropin releasing factor (CRF)-containing pathways projecting from the paraventricular nucleus (PVN) to the external layer of the median eminence (ME) in long-term hypophysectomized or adrenalectomized rats is described. Immunocytochemistry was followed by silver intensification of the diaminobenzidine end-product. In comparison with untreated control rats, both hypophysectomy and adrenalectomy resulted in a dramatic increase in immunostaining of the CRF-containing perikarya and fibers, particularly those originating from the PVN and terminating in the ME. The staining was more intense in adrenalectomized than in hypophysectomized rats. The CRF-positive fibers emerging from the PVN form a medial, an intermediate and a lateral fiber pathway. The lateral and intermediate CRF tracts leave the dorsolateral part of the PVN and course laterally and medially of the fornix, respectively, then ventrally toward the optic tract. Just dorsal to the optic tract they turn in caudal direction and run parallel with and very close to the basal surface of the hypothalamus; individual fibers then turn medially to terminate in the external layer of the ME. Only a few fibers originate from the medial-ventral part of the PVN (medial pathway). These fibers run in ventral direction along the walls of the 3rd ventricle and terminate in the ME. Thus the majority of CRF fibers, similarly to other peptidergic systems, reach the medial basal hypothalamus from the anterolateral direction.  相似文献   

5.
A comparative analysis of monosynaptic afferent and efferent connections of callosal neurons and target neurons of transcallosal fibers with neurons of the specific ipsilateral thalamic nuclei (ventral posterolateral, ventral posteromedial, ventral lateral, and anteroventral) was undertaken on the sensomotor cortex of unanesthetized rabbits, using an electrophysiological method. Differences were demonstrated between callosal neurons and target neurons of transcallosal fibers with respect to monosynaptic inputs from the thalamic nuclei and pathways proceeding toward these structures and (or) entering the pyramidal tract. Among target neurons, compared with callosal neurons, more cells had descending projections (54 and 14%, respectively). Monosynaptic action potentials arose in 22% of target neurons in response to stimulation of specific thalamic nuclei, whereas no such responses occurred in callosal neurons. Projections of target neurons into thalamic nuclei were shown to be formed both by independent fibers and by axon collaterals of the pyramidal tract. It is postulated that the distinctive properties thus discovered indicate significantly greater convergence of influence of thalamic relay neurons on the target neurons; this determines differences known to exist in characteristics of receptive fields and spontaneous and evoked activity of callosal neurons, on the one hand, and of neurons excited synaptically by transcallosal stimulation, on the other hand.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 305–314, May–June, 1985.  相似文献   

6.
Localization of GRF-like immunoreactive neurons in the rat brain   总被引:2,自引:0,他引:2  
The localization of human GRF1-44-immunoreactive neurons was studied in the rat brain. A dense accumulation of GRF-containing fibers was noted in the external layer of the median eminence. Cell bodies were observed in colchicine-treated rats. The most intensely fluorescent cluster of cells was contained in the arcuate nucleus. Other cells were seen on the base of the hypothalamus, within the median forebrain bundle, dorsal and ventral aspects of the ventromedial nucleus, zona incerta and dorsal part of the dorsomedial nucleus. These cells may influence the pulsatile release of pituitary growth hormone.  相似文献   

7.
用HRP追踪法与免疫细胞化学法观察了大鼠直肠内P物质(SP)、降钙素基因相关肽(CGRP)和血管活性肠肽(VIP)三种肽能神经的支配与来源。结果显示:(1)直肠GCRP和VIP肽能神经起源于盆丛副交感神经节(PSG)。(2)直肠感觉神经纤维来自骶2-4节段双侧背根神经节(S2-4-DRG)SP能或CGRP能神经元。(3)感觉神经元的中枢突进入骶髓2-3节段后角并形成较粗大的外侧束,其中大部分传入纤维经后角外侧缘走行,终止于侧角区中间外侧核交感神经元胞体周围。其余部分传入纤维延伸到骶髓2-3节段灰质第Ⅱ、Ⅲ层和灰质后连合核(中央自主神经核),进入中间外侧核的传入纤维与后连合核也有联系。上述结果提示,支配直肠的VIP能神经元参与了直肠肌运动的调节;SP和CGRP能神经元可能与直肠的运动、感觉调节有关。  相似文献   

8.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat α-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

9.
Development of the habenulointerpeduncular tract has been carried out on fixed brains obtained from 21 day rat embryos and from neonatal animals on the 0 and 9 days of postnatal development by DiI tracing method (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate) along neuronal membranes. The marker was inserted into the nuclei of the habenula, the interpeduncular nucleus, and into the area of raphe nuclei. Neurons and fibers that contained DiI were identified on vibratome sections by fluorescent and confocal microscopy. We have found that reciprocal connections between the lateral habenular nucleus and raphe nuclei are formed in the prenatal period by stage E21. Raphe nuclei innervating neurons were located in dorso- and ventrocaudal parts of the lateral habenular nucleus. Projections of the medial habenular nucleus onto interpeduncular nucleus were found only in the postnatal period from P2. Neurons that provide a source of these projections form characteristic groups inside the medial habenular nucleus. Therefore, the present study for the first time describes heterogenic formation of different projection systems that are included in the habenulointerpeduncular tract of rats at perinatal ontogenesis.  相似文献   

10.
Changes in RNA synthesis in liver nuclei were observed at different ages and after hypophysectomy and hormone replacement in female Sprague-Dawley rats. As determined by the incorporation of [3H]UMP into an acid-insoluble product, RNA synthesis decreased by about 75% in intact rats from 6 months to 24 months of age. This decline with age was not observed in liver nuclei from 24-month-old rats that had been hypophysectomized at 12 months and maintained on a minimal hormone-replacement therapy. Thyroid hormones and somatotropin (growth hormone) had an additive effect on RNA synthesis in liver nuclei from these hypophysectomized rats. The same hormones had no significant effect on intact, age-matched rats. With advancing age, nuclei of intact rats had an increase in the pool of free RNA polymerase and an apparent decrease in the enzyme activity bound to nuclear chromatin. There was no change in total enzyme with age. In hypophysectomized, hormone-treated rats, free RNA polymerase activity decreased and chromatin-bound activity increased. There was no difference in total nuclear RNA polymerase activity between operated or intact rats. However, the ratio of the bound to the free activity was different. These results suggest that the ability of RNA polymerase to bind to chromatin may be involved in the age-related decrease in liver nuclear RNA synthesis of intact rats.  相似文献   

11.
Li Q  Song G 《生理学报》2001,53(5):401-404
实验在10只成年家兔上进行,斜方体后核(RTN)内微量注入霍乱毒素β亚单位耦合辣根过氧化酶(CB-HRP)后,在脑桥Koelliker-Fuse 核,臂旁内侧核及臂旁外侧核观察到大量HRP标记神经元,在延髓孤束核腹外侧区,疑核和后疑核,面神经后核的腹侧及内侧区观察到少数HRP标记神经元,在面神经后核,疑核及后疑核区域观察到大量HRP顺行标记末梢纤维,实验结果表明,RTN和脑桥及延髓的呼吸相关结构之间存在纤维联系。  相似文献   

12.
The morphology and topographical distribution of neurons and terminals containing calcitonin gene-related peptide (CGRP) immunoreactivity in the cat periaqueductal grey (PAG) were studied using a rabbit antiserum raised against the C-terminal region of rat alpha-CGRP. In normal cats, numerous fibers, but rarely immunoreactive neurons, were observed in the PAG. CGRP-containing fibers showed bouton-like swellings along their length and expanded in terminal clusters of boutons. In many cases, CGRP-positive fibers were also observed in close association with small blood vessels. Immunoreactive fibers were particularly numerous at caudal PAG levels, mostly in its ventrolateral portion. In colchicine-treated cats, the pattern of CGRP-containing fibers was basically unchanged, despite a reduction of both the number of fibers and the intensity of fiber staining; in addition, numerous CGRP-positive neurons were found, mostly in the ventrolateral portion of the caudal PAG. These neurons were fusiform, spheroidal, and triangular in shape. The selective distribution of CGRP-positive elements in the PAG suggests a functional specialization of these neurons in the activation of pain-modulating mechanisms.  相似文献   

13.
Efferent projections of the lateral septal nucleus (LS) to the preoptic area and the hypothalamus were identified in 20 female guinea pigs after iontophoretic injection of the anterograde axonal tracer Fluoro-Ruby. Tubero-infundibular (TI) neurons of the preoptic area and the hypothalamus were retrogradely labeled after intracardiac injection of Granular Blue or Fluoro-Gold. Magnocellular neurons of the supraoptic and paraventricular nuclei were also labeled. The double labeling procedure allowed an estimation of the extent of the direct relationship between LS efferents and TI neurons. Contacts between lateral septal fibers and TI cell bodies were mainly observed at the light-microscopical level in the preoptic area. A group of labeled fibers coursing along the third ventricle established sparse connections with hypothalamic periventricular TI neurons. A few appositions was observed in the infundibular (arcuate) nucleus, suggestive of a monosynaptic regulation of TI neurons by a septo-arcuate tract. Close association with labeled magnocellular neurons was also noted at the edge of the supraoptic and paraventricular nuclei. The sparse but direct connections between LS and TI neurons may be involved in the neuroendocrine functions of the LS.  相似文献   

14.
The distribution of neuropeptide K (NPK), a 36-residue amidated peptide originally isolated from porcine brain, is described in the rat CNS by immunohistochemical methods. Antibodies were generated in rabbits to N-terminus and C-terminus regions of the peptide and the distribution of immunoreactive cell bodies and fibers was mapped in colchicine-treated and normal rat brains. Major areas of cell body staining included the medial habenular nucleus, the ventromedial nucleus of the hypothalamus, the interpeduncular nucleus, the lateral dorsal tegmental nucleus, the nucleus raphe pallidus, and the nucleus of the solitary tract. Some of the areas of dense NPK-fiber immunoreactivity included the ventral pallidum, the caudate-putamen, certain areas of the hypothalamus, the central and medial amygdaloid nuclei, the entopeduncular nucleus, the habenular nuclei, the substantia nigra pars reticulata, the caudal part of the spinal nucleus of the trigeminal nerve, the nucleus of the solitary tract and the dorsal horn of the spinal cord. A striking similarity exists between this pattern of immunoreactive staining and that described for substance P, suggesting that the tachykinin systems do not exist independently in the brain. The possible roles for multiple tachykinins in the brain are discussed.  相似文献   

15.
Development of direct axonal connections of the hypothalamic mammillary bodies with ventral and dorsal tegmental nuclei of Gudden was studied on fixed rat brains from day 14 of embryonic development until day 10 of postnatal development using the method of diffusion of the lipophilic fluorescent carbocyanine tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate along the neuronal membranes. The tracer was inserted into the mammillary bodies or into the tegmentum and after incubation in a fixative fluorescent nerve cells and nerve fibers were visualized in the brain tissue. The mammillotegmental tract was found to start developing earlier than other conducting systems of the mammillary bodies. On days 14-15 of embryonic development, it was visualized as a bundle of axons running from the mammillary bodies caudally to the midbrain. A group of neurons in the midbrain tegmentum and their axons going to the mammillary bodies via the mammillary peduncle were first visualized on day 19 of embryonic development. The mammillotegmental tract and mammillary peduncle developed progressively from the moment of birth. Ventral and dorsal tegmental nuclei were formed in the midbrain by day 10 of the postnatal development. Thus, the formation of reciprocal connections of the mammillary bodies with midbrain tegmental nuclei was first described during perinatal development in rats.  相似文献   

16.
Development of direct axonal connections of the hypothalamic mammillary bodies with ventral and dorsal tegmental nuclei of Gudden was studied on fixed rat brains from day 14 of embryonic development until day 10 of postnatal development using the method of diffusion of the lipophilic fluorescent carbocyanine tracer 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate along the neuronal membranes. The tracer was inserted into the mammillary bodies or into the tegmentum and, after incubation in a fixative, fluorescent nerve cells and nerve fibers were visualized in the brain tissue. The mammillotegmental tract was found to start developing earlier than other projection systems of the mammillary bodies. On days 14–15 of embryonic development, it was visualized as a bundle of axons running from the mammillary bodies caudally to the midbrain. A group of neurons in the midbrain tegmentum and their axons going to the mammillary bodies via the mammillary peduncle were first visualized on day 19 of embryonic development. The mammillotegmental tract and mammillary peduncle developed progressively from the moment of birth. Ventral and dorsal tegmental nuclei were formed in the midbrain by day 10 of the postnatal development. Thus, the formation of reciprocal connections of the mammillary bodies with midbrain tegmental nuclei was first described during perinatal development in rats.  相似文献   

17.
The paper presents a comparative study of NO neurons in the solitary tract nucleus, giant-cell, and lateral reticular nuclei in rats at 4, 7, 10, 14, 30, 45, and 60 days old and 3, 6, 12, 18, 24 months old. We determine the active quantitative and qualitative changes that occur in NO-positive neurons in the studied nuclei during the course of postnatal development. A low level of enzyme activity is observed on the first day; it reaches a peak level around the first-third month, then slowly declines. The size and number of nitroxidergic neurons increases, while the relative cell density decreases until the third month of life. We reveal local differences in the ontogenetic development of NO neurons in the studied nuclei. Solitary tract neurons have the highest rate of development, while NO neurons of old animals undergo early and extreme changes as compared to other studied nuclei of rat medulla oblongata.  相似文献   

18.
High fat maintenance diet attenuates hindbrain neuronal response to CCK   总被引:2,自引:0,他引:2  
Rats maintained on a high fat diet reduce their food intake less in response to exogenous cholecystokinin (CCK) than rats maintained on a low fat diet. In addition, inhibition of gastric emptying by CCK is markedly attenuated in rats maintained on a high fat diet. Both inhibition of food intake and gastric emptying by CCK are mediated by sensory fibers in the vagus nerve. These fibers terminate on dorsal hindbrain neurons of the nucleus of the solitary tract and area postrema. To determine whether diet-induced changes in the control of feeding and gastric emptying are accompanied by altered vagal sensory responsiveness, we examined dorsal hindbrain expression of Fos-like immunoreactivity (Fos-li) following intraperitoneal CCK injection of rats maintained on high fat or low fat diets. Following CCK, there were numerous Fos-li nuclei in the area postrema and in the commissural and medial subnuclei of the nucleus of the solitary tract of rats maintained on a low fat diet. However, Fos-li was absent or rare in the brains of rats maintained on a high fat diet. These data suggest that the vagal sensory response to exogenous CCK is reduced in rats maintained on a high fat diet. Our results also are consistent with our previous findings that CCK-induced reduction of food intake and gastric emptying are both attenuated in rats maintained on a high fat diet. In addition our results support the hypothesis that attenuation of CCK-induced inhibition of food intake and gastric emptying may be due to diet-induced diminution of vagal CCK responsiveness.  相似文献   

19.
Histochemical, immunocytochemical and radioassay study was performed to detect the occurrence of NOS-immunoreactive primary trigeminal sensory somata in the trigeminal ganglion, including their fiber components. Spinal trigeminal tract and sensory trigeminal nuclei were studied using the same methods. It was found that more than 30% of all somata in the trigeminal ganglion are NOS immunoreactive. Corresponding fibers were detected in the spinal trigeminal tract. NOS immunoreactive fibers of three different categories could be followed to terminate in the sensory trigeminal nuclei. Data presented here confirm that trigeminal sensory system is richly endowed with NOS and that NO is used to communicate between the first and second-order trigeminal sensory neurons.
Acknowledgements:   Supported by VEGA Grant no. 2/3217/23PS9, STAA Grant no. 51-013002 and by NIH grants NS 32794 and NS 40386 to M.M.  相似文献   

20.
Histochemical, immunocytochemical and radioassay study was performed to detect the occurrence of NOS‐immunoreactive primary trigeminal sensory somata in the trigeminal ganglion, including their fiber components. Spinal trigeminal tract and sensory trigeminal nuclei were studied using the same methods. It was found that more than 30% of all somata in the trigeminal ganglion are NOS immunoreactive. Corresponding fibers were detected in the spinal trigeminal tract. NOS immunoreactive fibers of three different categories could be followed to terminate in the sensory trigeminal nuclei. Data presented here confirm that trigeminal sensory system is richly endowed with NOS and that NO is used to communicate between the first and second‐order trigeminal sensory neurons. Acknowledgements: Supported by VEGA Grant no. 2/3217/23PS9, STAA Grant no. 51‐013002 and by NIH grants NS 32794 and NS 40386 to M.M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号