首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.  相似文献   

3.
The chemolithoautotroph, Arthrobacter sp.15b oxidizes arsenite to arsenate using a membrane bound arsenite oxidase. The enzyme arsenite oxidase is purified to its homogeneity and identified using MALDI-TOF MS analysis. Upon further characterization, it was observed that the enzyme is a heterodimer showing native molecular mass as ~100 kDa and appeared as two subunits of ~85 kDa LSU and 14 kDa SSU on SDS–PAGE. The V max and K m values of the enzyme was found to be 2.45 μM (AsIII)/min/mg) and 26 μM, respectively. The purified enzyme could withstand wide range of pH and temperature changes. The enzyme, however, gets deactivated in the presence of 1 mM of DEPC suggesting the involvement of histidine at the binding site of the enzyme. The peptide analysis of large sub unit of the enzyme showed close match with the arsenite oxidases of Burkholderia sp. YI019A and arsenite oxidase, Mo-pterin containing subunit of Alcaligenes faecalis. The small subunit, however, differed from other arsenite oxidases and matched only with 2Fe–2S binding protein of Anaplasma phagocytophilum. This indicates that Rieske subunits containing the iron–sulfur clusters present in the large as well as small subunits of the enzyme are integral part of the protein.  相似文献   

4.
Anl-amino-acid oxidase (EC 1.4.3.1) that catalyzes the oxidative deamination of twelvel-amino acids has been purified 21-fold and with 14% yield to electrophoretic homogeneity fromChlamydomonas reinhardtii cells by ammonium-sulfate fractionation, gel filtration through Sephacryl and Superose, anion-exchange chromatography and preparative electrophoresis in polyacrylamide gels. The native enzyme is a protein of 470 kDa and consists of eight identical or similarsized subunits of 60 kDa each. Optimum pH and temperature were 8.2 and 55° C, respectively, with a Q10 (45–55° C) of 1.7 and an activation energy of 45 kJ · mol–1. Its absorption spectrum showed, in the visible region, maxima at 360 and 444 nm, characteristic of a flavoprotein with a calculated flavin content of 7.7 mol FAD per mol of native enzyme. ApparentK m values of the twelvel-amino acids which can act as substrates ofl-amino-acid oxidase ranged between 31 M for phenylalanine and 176 M for methionine. The effect of several specific group reagents, chelating agents and bivalent cations on enzyme activity has also been studied.This work was supported by Grant 780-CO2-01 from CICYT, Spain. The skillful secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.  相似文献   

5.
Acetylpolyamine and spermine oxidases are involved in the catabolism of polyamines. The discovery of selective inhibitors of these enzymes represents an important tool for the development of novel anti-neoplastic drugs. Here, a comparative study on acetylpolyamine and spermine oxidases inhibition by the polyamine analogue chlorhexidine is reported. Chlorhexidine is an antiseptic diamide, commonly used as a bactericidal and bacteriostatic agent. Docking simulations indicate that chlorhexidine binding to these enzymes is compatible with the stereochemical properties of both acetylpolyamine oxidase and spermine oxidase active sites. In fact, chlorhexidine is predicted to establish several polar and hydrophobic interactions with the active site residues of both enzymes, with binding energy values ranging from ?7.6 to ?10.6 kcal/mol. In agreement with this hypothesis, inhibition studies indicate that chlorhexidine behaves as a strong competitive inhibitor of both enzymes, values of Ki being 0.10 μM and 0.55 μM for acetylpolyamine oxidase and spermine oxidase, respectively.  相似文献   

6.
A novel sulfite oxidase has been identified from Thermus thermophilus AT62. Despite this enzyme showing significant amino-acid sequence homology to several bacterial and eukaryal putative and identified sulfite oxidases, the kinetic analysis, performed following the oxidation of sulfite and with ferricyanide as the electron acceptor, already pointed out major differences from representatives of bacterial and eukaryal sources. Sulfite oxidase from T. thermophilus, purified to homogeneity, is a monomeric enzyme with an apparent molecular mass of 39.1 kDa and is almost exclusively located in the periplasm fraction. The enzyme showed sulfite oxidase activity only when ferricyanide was used as electron acceptor, which is different from most of sulfite-oxidizing enzymes from several sources that use cytochrome c as co-substrate. Spectroscopic studies demonstrated that the purified sulfite oxidase has no cytochrome like domain, normally present in homologous enzymes from eukaryotic and prokaryotic sources, and for this particular feature it is similar to homologous enzyme from Arabidopsis thaliana. The identified gene was PCR amplified on T. thermophilus AT62 genome, expressed in Escherichia coli and the recombinant protein identified and characterized.  相似文献   

7.
The endosymbiont most likely to have given rise to mitochondria is an aerobic bacterium belonging to the α subdivision of the so-called purple bacteria such as Rickettsia, Bradythizobium and Agrobacterium [1 and 2]. Contents of the -enantiomers of serine, alanine, proline, glutamate and aspartate in rat liver whole mitochondria, mitochondrial outer membranes, inner membranes and matrix, soluble proteins and free amino acids were detected. These values for -amino acid content were compared with those in soluble proteins and free amino acids from the purple bacteria Paracoccus denitrificans, Pseudomonas aeruginosa and Escherichia coli, members, respectively of the α, β, and γ subdivisions, to find any similarity between mitochondria and these purple bacteria. A similarity was observed in protein -amino acid contents which were low (<1.5%, D-type/D-type+L-type) both in the membrane and soluble protein fractions from mitochondria and in soluble protein from bacteria. Oddly, substantial amounts of free -serine and free -aspartate (around 2%) were found for the first time in mitochondria. The contents of -serine and -aspartate were higher than those of -alanine, -proline and -glutamate. In purple bacteria, the concentration of -serine (<2%) was the lowest of the five amino acids examined, and those of -alanine (27–32%) and -glutamate (7–26%) were high. Therefore, no similarity was shown in the free -amino acid content between mitochondria and any of the three purple bacteria.  相似文献   

8.
N-acyl- -amino acid amidohydrolases can be classified into three types based on substrate specificity. -aminoacylase has been reported to occur in a very few bacteria such as Pseudomonas, Streptomyces, and Alcaligenes. N-acyl- -aspartate amidohydrolase ( -AAase) has been reported in only Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) while N-acyl- -glutamate amidohydrolase ( -AGase) has been isolated in two stains of Pseudomonas sp. 5f-1 and Alcaligenes A-6. The physiological roles of these enzymes in these microbes are not clear. They are individually characteristic in their substrate specificities, inducer profiles, inhibitors, isoelectric points, metal dependency, and some physicochemical properties. The primary structures of all the three types of N-acyl- -amino acid amidohydrolases from Alcaligenes A-6 were determined from their nucleotide sequences. Comparison of their primary structures revealed high homology (46–56%) between the different enzymes. The three enzymes showed 26–27% sequence homology with -aminoacylases from Bacillus stearothermophilus, porcine, and human. Chemical modification and site-directed mutagenesis identified the histidyl residues essential for catalysis. The Alcaligenes N-acyl- -amino acid amidohydrolases share significant sequence similarities with some members of the urease-related amidohydrolase superfamily proposed by Holm and Sander [L. Holm, C. Sander, Proteins: Structure, Function and Genetics 28 (1997) 72].  相似文献   

9.
Abstract— d -Aspartate oxidase activity has been measured in water extracts of acetone powders prepared from cat forebrain, cerebellum and spinal cord, rat brain, hog brain and sheep brain stem, and compared with that found in rabbit and cat kidney. The results suggest that the brain enzyme has very similar properties to the n-aspartate oxidase ( d -aspartate: oxygen oxidorcductase (deaminating), EC 1.4.3.1) of kidney. Crude extracts (ammonium sulphate fractions of water extracts of acetone powders) displayed little activity without added FAD. FMN could not replace FAD. With oxygen as electron acceptor, the enzyme oxidized d -aspartate much more rapidly than d -glutamate, and displayed quite high activities with N -substituted derivatives of d -aspartate as substrates. Those amino acids susceptible to oxidation by d -amino acid oxidase were not oxidized by the d -aspartate oxidase. The regional distribution of the d -aspartate oxidase activity within the CNS differed from that of d -amino acid oxidase. As has been previously observed for kidney d -aspartate oxidase activity, dicarboxylic acids competitively inhibited this enzymic activity in brain extracts, while sodium benzoate and sodium barbitone, inhibitors of d -amino acid oxidase, were without effect.  相似文献   

10.
Slocum RD  Furey MJ 《Planta》1991,183(3):443-450
An electron-microscopic cytochemical method was used to localize diamine oxidase (DAO) in pea and polyamine oxidase (PAO) in maize (Zea mays L.). The method, based on the precipitation of amine-oxidase-generated H2O2 by CeCl3, was shown to be specific for DAO and PAO and permitted their localization in plant tissues with a high degree of resolution. Both enzymes are localized exclusively in the cell wall. Both DAO- and PAO-activity staining is most intense in the middle lamellar region of the wall and in cells exhibiting highly lignified walls. The oxidases could provide H2O2 for peroxidase-mediated cross-linking reactions in the cell wall and may, in this capacity, play a role in the regulation of plant growth.Abbreviations AG 1-aminoguanidine - AT 3-amino-1,2,4-triazole - -HEH -hydroxyethylhydrazine - DAO(s) diamine oxidase(s) - PAO(s) polyamine oxidase(s) - Put putrescine - Spd spermidine - Spm spermine The authors wish to thank Nancy Piatczyc for the technical assistance with electron-microscopy studies. We are grateful to Dr. Stanley J. Roux, University of Texas at Austin, for providing us with samples of maize cell-wall exudates. This work was supported by grants to R.D.S from the National Aeronautics and Space Administration (NAGW-1049 and NAGW-1382).  相似文献   

11.
Cytochrome cbb 3 oxidase, a member of the heme–copper oxidase superfamily, catalyses the reduction of oxygen to water and generates a proton gradient. Cytochrome c oxidases are characterized by a catalytic subunit (subunit I) containing two hemes and one copper ion ligated by six invariant histidine residues, which are diagnostic of heme–copper oxidases in all type of the heme–copper oxidase superfamily. Alignments of the amino acid sequences of subunit I (FixN or CcoN) of the cbb 3-type oxidases show that catalytic subunit also contains six non-canonical histidine residues that are conserved in all CcoN subunits of the cbb 3 oxidase, but not the catalytic subunits of other members of heme–copper oxidases superfamily. The function of these six CcoN-specific conserved histidines of cbb 3-type oxidase in R. capsulatus is unknown. To analyze the contribution of the two invariant histidines of CcoN, H300 and H394, in activity and assembly of the Rhodobacter capsulatus cbb 3-type oxidase, they were substituted for valine and alanine, respectively by site-directed mutagenesis. H300V and H394A mutations were analyzed with respect to their activity and assembly. It was found that H394A mutation led to a defect in the assembly of both CcoP and CcoO in the membrane, which results in almost complete loss of activity and that although the H300V mutant is normally assembled in the membrane and retain their stability, its catalytic activity is significantly reduced when compared with wild-type oxidase.  相似文献   

12.
Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa 3-type cytochrome c oxidase. The confirmed molecular weights of the α-subunit (52.5 kDa), the β-subunit (25 kDa), and the γ-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the γ-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa 3-type cytochrome c oxidase. This is the first report to indicate that aa 3-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans.  相似文献   

13.
The gene encoding the flavin-containing monoamine oxidase (MAO-N) of the filamentous fungus Aspergillus niger was cloned. MAO-N is the first nonvertebrate monoamine oxidase described to date. Three partial cDNA clones, isolated from an expression library, were used to identify and clone the structural gene (maoN) from an A. niger genomic DNA library. The maoN gene was sequenced, and analysis revealed an open reading frame that codes for a protein of 495 amino acids with a calculated molecular mass of 55.6 kDa. Sequencing of an internal proteolytic fragment of the purified enzyme confirmed the derived amino acid sequence. Analysis of the deduced amino acid sequence indicates that MAO-N is structurally related to the human monoamine oxidases MAO-A and MAO-B. In particular, the regions known to be involved in the binding of the FAD cofactor show a high degree of homology; however, the conserved cysteine residue to which the flavin cofactor is covalently bound in the mammalian forms is absent in the fungal enzyme. MAO-N has the C-terminal tripeptide Ala-Arg-Leu, which corresponds to the consensus targeting sequence found in many peroxisomal enzymes. The full-length cDNA for MAO-N was expressed in Escherichia coli from the T7 promoter of the expression vector pET3a, yielding a soluble and fully active enzyme form.  相似文献   

14.
Clostridium aminovalericum, an obligate anaerobe, is unable to form colonies on PYD agar plates in the presence of 1% O2. When grown anaerobically in PYD liquid medium, the strain can continue normal growth after the shift from anoxic (sparged with O2-free N2 carrier-gas) to microoxic (sparged with 3% O2/97% N2 mixed carrier-gas) growth conditions in the mid exponential phase (OD660=1.0). When the strain grew under 3% O2/97% N2, the medium remains anoxic. Thirty minutes after beginning aeration with 3% O2, the activity of NADH oxidase in cell-free extracts increased more than five-fold from the level before aeration. We purified NADH oxidase to determine the characteristics of this enzyme in an obligate anaerobe. The purified NADH oxidase dominated the NADH oxidase activity detected in cell-free extracts. The enzyme is a homotetramer composed of a subunit with a molecular mass of 45 kDa. The enzyme shows a spectrum typical of a flavoprotein, and flavin adenine dinucleotide (FAD) was identified as a cofactor. The final product of NADH oxidation was H2O, and the estimated Km for oxygen was 61.9 M. These data demonstrate that an O2-response enzyme that is capable of detoxifying oxygen to water exists in C. aminovalericum.Abbreviations NRIC NODAI Research Institute-Culture Collection Center, Tokyo University of Agriculture, Tokyo, Japan - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride  相似文献   

15.
The gene (choB b ), encoding cholesterol oxidase from Brevibacterium sp. CCTCC M201008, was cloned and sequenced by PCR (GenBank accession number: DQ345780). The gene consists of 1653 base pairs and encodes a protein of 551 amino acids. ChoB b exhibited a homology of 98% with cholesterol oxidase gene from Brevibacterium sterolicum ATCC 21387. The cholesterol oxidase gene, cloned in the vector pET-28a, was over-expressed in Escherichia coli BL21–CodonPlus (DE3)-RP grown at 23°C in Luria-Bertani medium containing 50 μM riboflavin, the precursor of the FAD coenzyme of the enzyme. A maximum activity of 3.7 U/mg was obtained from cell free extract of E. coli BL21-CodonPlus (DE3)-RP harboring the pET-28a-choBb.  相似文献   

16.
Rhodospirillum rubrum CAF10, a spontaneous cytochrome oxidase defective mutant, was isolated from strain S1 and used to analyze the aerobic respiratory system of this bacterium. In spite of its lack of cytochrome oxidase activity, strain CAF10 grew aerobically in the dark although at a decreased rate and with a reduced final yield. Furthermore, aerobically grown mutant cells took up O2 at high rates and membranes isolated from those cells exhibited levels of NADH and succinate oxidase activities which were similar to those of wild type membranes. It was observed also that whereas in both strains O2 uptake (intact cells) and NADH and succinate oxidase activities (isolated membranes) were not affected by 0.2 mM KCN, the cytochrome oxidase activity of the wild type strain was inhibited about 90% by 0.2 mM KCN. These data indicate the simultaneous presence of two terminal oxidases in the respiratory system of R. rubrum, a cytochrome oxidase and an alternate oxidase, and suggest that the rate of respiratory electron transfer is not limited at the level of the terminal oxidases. It was also found that the aerobic oxidation of cellular cytochrome c 2 required the presence of a functional cytochrome oxidase activity. Therefore it seems that this electron carrier, which only had been shown to participate in photosynthetic electron transfer, is also a constituent of the respiratory cytochrome oxidase pathway.Abbreviations DCIP 2,6-dichlorophenolindophenol - DMPD N,N-dimethyl-p-phenylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]-glycine  相似文献   

17.
The objective of this work is to obtain an abundant source of cholesterol oxidases for industrial and medicinal needs. Thirteen bacterial strains that express high level of inducible extracellular cholesterol oxidase (COX) were isolated from carnivore feces. One of these strains, named COX8-9, belonging to the genus Enterobacter, was found to produce the highest level of cholesterol oxidase. COX from strain COX8-9 was purified from the culture supernatant by ultrafiltration followed with two consecutive Q-Sepharose chromatographies at different pH values, and then by Superdex-75 gel filtration. The purified enzyme was a monomer with a molecular weight of 58 kDa, and exhibited maximum absorption at 280 nm. The K m value for oxidation of cholesterol by this enzyme was 1.2 × 10−4 M, with optimum activity at pH 7.0. Enzymatic activity of COX was enhanced 3-fold in the presence of metal ion Cu2+, and the enzyme was stable during long-term aqueous storage under various temperatures, indicating its potential as a clinical diagnostic reagent. Preparation and characterization of cholesterol oxidases from the other selected strains are under way. Deping Ye and Jiahong Lei are contributed equally to this work.  相似文献   

18.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

19.
Bradyrhizobium japonicum possesses a mitochondria-like respiratory chain terminating with an aa 3-type cytochrome c oxidase. The gene for subunit I of this enzyme (coxA) had been identified and cloned previously via heterologous hybridization using a Paracoccus denitrificans DNA probe. In the course of these studies, another B. japonicum DNA region was discovered which apparently encoded a second terminal oxidase that was different from cytochrome aa 3 but also belonged to the superfamily of heme/copper oxidases. Nucleotide sequence analysis revealed a cluster of at least four genes, coxMNOP, organized most probably in an operon. The predicted coxM gene product shared significant similarity with subunit II of cytochrome c oxidases from other organisms: in particular, all of the proposed CuA ligands were conserved as well as three of the four acidic amino acid residues that might be involved in the binding of cytochrome c. The coxN gene encoded a polypeptide with about 40% sequence identity with subunit I representatives including the previously found CoxA protein: the six presumed histidine ligands of the prosthetic groups (two hemes and CuB) were strictly conserved. A remarkable feature of the DNA seqence was the presence of two genes, coxO and coxP, whose products were both homologous to subunit III proteins. A B.japonicum coxN mutant strain was created by marker exchange mutagenesis which, however, exhibited no obvious defects in free-living, aerobic growth or in root nodule symbiosis with soybean. This shows that the coxMNOP genes are not essential for respiration in the N2 fixing bacteroid.Abbreviations ORF open reading frame - TMPD N,N,N',N'-tetramethyl-p-phenylenediamine  相似文献   

20.
Cytochromec oxidase was purified from mitochondria ofEuglena gracilis and separated into 15 different polypeptide subunits by polyacrylamide gel electrophoresis. All 15 subunits copurify through various purification procedures, and the subunit composition of the isolated enzyme is identical to that of the immunoprecipitated one. Therefore, the 15 protein subunits represent integral components of theEuglena oxidase. In anin vitro protein-synthesizing system using isolated mitochondria, polypeptides 1–3 were radioactive labeled in the presence of [35S]methionine. This further identifies these polypeptides with the three largest subunits of cytochromec oxidse encoded by mitochondrial DNA in other eukaryotic organisms. By subtraction, the other 12 subunits can be assigned to nuclear genes. The isolatedEuglena oxidase was highly active withEuglena cytochromec 558 and has monophasic kinetics. Using horse cytochromec 550 as a substrate, activity of the isolated oxidase was rather low. These findings correlate with the oxidase activity of mitochondrial membranes. Again, reactivity was low with cytochromec 550 and 35-fold higher with theEuglena cytochromec 558. The data show that the cytochromec oxidase of the protistEuglena is different from other eukaryotic cytochromec oxidases in number and size of subunits, and also with regard to kinetic properties and substrate specificity.Abbreviations kDa kilodalton - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TN turnover number  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号