首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s). While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4)P) levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4)P in membranes. To determine whether VPS13A affects PtdIns(4)P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4)P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4)P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals.  相似文献   

4.
The involvement of protein kinase C in differentiation of rat adipocyte precursor cells in serum-free culture was evaluated by using various protein kinase inhibitors. Induction of adipose conversion, which was maximal after 10 days of culture in the presence of 5 μg/ml insulin, 10 μg/ml transferrin, and 200 pM triiodothyronine, was inhibited by the addition of protein kinase C inhibitors, H-7 and staurosporine, in a dose dependent fashion with the maximal effect at 10 μM and 10 nM, respectively. Inhibition of adipocyte differentiation by 12-O-tetradecanoylphorbol 13-acetate (10−8M), an activator of protein kinase C, was reversed by a concomitant addition of either 10 μM H-7 or 10 nM staurosporine. HA1004, a potent inhibitor of cAMP- and cGMP-dependent protein kinases, with minimal inhibitory activity on protein kinase C, did not affect adipose conversion. Furthermore, H-89, another isoquinoline derivative with a selective inhibitory action on cAMP-dependent protein kinase, was without effect on cellular differentiation. These results indicate that the potentiation of adipogenesis by H-7 and staurosporine is mediated by suppression of protein kinase C and that protein kinase C is involved in adipocyte differentiation in an inhibitory fashion.  相似文献   

5.
Galectin-3, a 31 kDa member of the β-galactoside-binding proteins, is an intracellular and extracellular lectin which interacts with intracellular glycoproteins, cell surface molecules and extracellular matrix proteins. Galectin-3 is expressed widely in epithelial and immune cells and its expression is correlated with cancer aggressiveness and metastasis. Galectin-3 is involved in various biological phenomena including cell growth, adhesion, differentiation, angiogenesis and apoptosis. Recent research revealed that galectin-3 is associated with several steps of invasion and metastasis, like angiogenesis, cell-matrix interaction, dissemination through blood flow and extravasation. Recently, we and others have shown that galectin-3 can be a reliable diagnostic marker in certain cancers and one of the target proteins of cancer treatment. In this review, we describe the involvement of galectin-3 in each steps of metastasis and clinical significance of galectin-3. Published in 2004.  相似文献   

6.
The Vps13 protein family is highly conserved in eukaryotic cells. Mutations in human VPS13 genes result in a variety of diseases, such as chorea acanthocytosis (ChAc), but the cellular functions of Vps13 proteins are not well defined. In yeast, there is a single VPS13 orthologue, which is required for at least two different processes: protein sorting to the vacuole and sporulation. This study demonstrates that VPS13 is also important for mitochondrial integrity. In addition to preventing transfer of DNA from the mitochondrion to the nucleus, VPS13 suppresses mitophagy and functions in parallel with the endoplasmic reticulum–mitochondrion encounter structure (ERMES). In different growth conditions, Vps13 localizes to endosome–mitochondrion contacts and to the nuclear–vacuole junctions, indicating that Vps13 may function at membrane contact sites. The ability of VPS13 to compensate for the absence of ERMES correlates with its intracellular distribution. We propose that Vps13 is present at multiple membrane contact sites and that separation-of-function mutants are due to loss of Vps13 at specific junctions. Introduction of VPS13A mutations identified in ChAc patients at cognate sites in yeast VPS13 are specifically defective in compensating for the lack of ERMES, suggesting that mitochondrial dysfunction might be the basis for ChAc.  相似文献   

7.
8.
Vacuolar protein sorting 13 (VPS13) proteins have been studied in a number of organisms, and mutations in VPS13 genes have been implicated in two human genetic disorders, but the function of these proteins is poorly understood. The TtVPS13A protein was previously identified in a mass spectrometry analysis of the Tetrahymena thermophila phagosome proteome (M. E. Jacobs et al., Eukaryot. Cell 5:1990–2000, 2006), suggesting that it is involved in phagocytosis. In this study, we analyzed the structure of the macronuclear TtVPS13A gene, which was found to be composed of 17 exons spanning 12.5 kb and was predicted to encode a protein of 3,475 amino acids (aa). A strain expressing a TtVPS13A-green fluorescent protein (GFP) fusion protein was constructed, and the protein was found to associate with the phagosome membrane during the entire cycle of phagocytosis. In addition, Tetrahymena cells with a TtVPS13A knockout mutation displayed impaired phagocytosis. Specifically, they grew slowly under conditions where phagocytosis is essential, they formed few phagosomes, and the digestion of phagosomal contents was delayed compared to wild-type cells. Overall, these results provide evidence that the TtVPS13A protein is required for efficient phagocytosis.  相似文献   

9.
Membrane trafficking intermediates involved in the transport of proteins between the TGN and the lysosome-like vacuole in the yeast Saccharomyces cerevisiae can be accumulated in various vps mutants. Loss of function of Vps45p, an Sec1p-like protein required for the fusion of Golgi-derived transport vesicles with the prevacuolar/endosomal compartment (PVC), results in an accumulation of post-Golgi transport vesicles. Similarly, loss of VPS27 function results in an accumulation of the PVC since this gene is required for traffic out of this compartment.

The vacuolar ATPase subunit Vph1p transits to the vacuole in the Golgi-derived transport vesicles, as defined by mutations in VPS45, and through the PVC, as defined by mutations in VPS27. In this study we demonstrate that, whereas VPS45 and VPS27 are required for the vacuolar delivery of several membrane proteins, the vacuolar membrane protein alkaline phosphatase (ALP) reaches its final destination without the function of these two genes. Using a series of ALP derivatives, we find that the information to specify the entry of ALP into this alternative pathway to the vacuole is contained within its cytosolic tail, in the 13 residues adjacent to the transmembrane domain, and loss of this sorting determinant results in a protein that follows the VPS-dependent pathway to the vacuole.

Using a combination of immunofluorescence localization and pulse/chase immunoprecipitation analysis, we demonstrate that, in addition to ALP, the vacuolar syntaxin Vam3p also follows this VPS45/27-independent pathway to the vacuole. In addition, the function of Vam3p is required for membrane traffic along the VPS-independent pathway.

  相似文献   

10.
11.
Mutations in the S. cerevisiae VPS29 and VPS30 genes lead to a selective protein sorting defect in which the vacuolar protein carboxypeptidase Y (CPY) is missorted and secreted from the cell, while other soluble vacuolar hydrolases like proteinase A (PrA) are delivered to the vacuole. This phenotype is similar to that seen in cells with mutations in the previously characterized VPS10 and VPS35 genes. Vps10p is a late Golgi transmembrane protein that acts as the sorting receptor for soluble vacuolar hydrolases like CPY and PrA, while Vps35p is a peripheral membrane protein which cofractionates with membranes enriched in Vps10p. The sequences of the VPS29, VPS30, and VPS35 genes do not yet give any clues to the functions of their products. Each is predicted to encode a hydrophilic protein with homologues in the human and C. elegans genomes. Interestingly, mutations in the VPS29, VPS30, or VPS35 genes change the subcellular distribution of the Vps10 protein, resulting in a shift of Vps10p from the Golgi to the vacuolar membrane. The route that Vps10p takes to reach the vacuole in a vps35 mutant does not depend upon Sec1p mediated arrival at the plasma membrane but does require the activity of the pre-vacuolar endosomal t-SNARE, Pep12p. A temperature conditional allele of the VPS35 gene was generated and has been found to cause missorting/secretion of CPY and also Vps10p to mislocalize to a vacuolar membrane fraction at the nonpermissive temperature. Vps35p continues to cofractionate with Vps10p in vps29 mutants, suggesting that Vps10p and Vps35p may directly interact. Together, the data indicate that the VPS29, VPS30, and VPS35 gene products are required for the normal recycling of Vps10p from the prevacuolar endosome back to the Golgi where it can initiate additional rounds of vacuolar hydrolase sorting.  相似文献   

12.
X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by mutations of the myotubularin gene, MTM1. Myotubularin belongs to a large family of conserved lipid phosphatases that include both catalytically active and inactive myotubularin-related proteins (i.e., “MTMRs”). Biochemically, catalytically inactive MTMRs have been shown to form heteroligomers with active members within the myotubularin family through protein-protein interactions. However, the pathophysiological significance of catalytically inactive MTMRs remains unknown in muscle. By in vitro as well as in vivo studies, we have identified that catalytically inactive myotubularin-related protein 12 (MTMR12) binds to myotubularin in skeletal muscle. Knockdown of the mtmr12 gene in zebrafish resulted in skeletal muscle defects and impaired motor function. Analysis of mtmr12 morphant fish showed pathological changes with central nucleation, disorganized Triads, myofiber hypotrophy and whorled membrane structures similar to those seen in X-linked myotubular myopathy. Biochemical studies showed that deficiency of MTMR12 results in reduced levels of myotubularin protein in zebrafish and mammalian C2C12 cells. Loss of myotubularin also resulted in reduction of MTMR12 protein in C2C12 cells, mice and humans. Moreover, XLMTM mutations within the myotubularin interaction domain disrupted binding to MTMR12 in cell culture. Analysis of human XLMTM patient myotubes showed that mutations that disrupt the interaction between myotubularin and MTMR12 proteins result in reduction of both myotubularin and MTMR12. These studies strongly support the concept that interactions between myotubularin and MTMR12 are required for the stability of their functional protein complex in normal skeletal muscles. This work highlights an important physiological function of catalytically inactive phosphatases in the pathophysiology of myotubular myopathy and suggests a novel therapeutic approach through identification of drugs that could stabilize the myotubularin-MTMR12 complex and hence ameliorate this disorder.  相似文献   

13.
Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA, tipB, tipC, and tipD). We found a clear autophagic dysfunction in tipC and tipD while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux.  相似文献   

14.
Galectin-3 is a human lectin involved in many cellular processes including differentiation, apoptosis, angiogenesis, neoplastic transformation, and metastasis. We evaluated galectin-3C, an N-terminally truncated form of galectin-3 that is thought to act as a dominant negative inhibitor, as a potential treatment for multiple myeloma (MM). Galectin-3 was expressed at varying levels by all 9 human MM cell lines tested. In vitro galectin-3C exhibited modest anti-proliferative effects on MM cells and inhibited chemotaxis and invasion of U266 MM cells induced by stromal cell-derived factor (SDF)-1α. Galectin-3C facilitated the anticancer activity of bortezomib, a proteasome inhibitor approved by the FDA for MM treatment. Galectin-3C and bortezomib also synergistically inhibited MM-induced angiogenesis activity in vitro. Delivery of galectin-3C intravenously via an osmotic pump in a subcutaneous U266 cell NOD/SCID mouse model of MM significantly inhibited tumor growth. The average tumor volume of bortezomib-treated animals was 19.6% and of galectin-3C treated animals was 13.5% of the average volume of the untreated controls at day 35. The maximal effect was obtained with the combination of galectin-3C with bortezomib that afforded a reduction of 94% in the mean tumor volume compared to the untreated controls at day 35. In conclusion, this is the first study to show that inhibition of galectin-3 is efficacious in a murine model of human MM. Our results demonstrated that galectin-3C alone was efficacious in a xenograft mouse model of human MM, and that it enhanced the anti-tumor activity of bortezomib in vitro and in vivo. These data provide the rationale for continued testing of galectin-3C towards initiation of clinical trials for treatment of MM.  相似文献   

15.
Galectins constitute a family of proteins that bind to beta-galactoside residues and have diverse physiological functions. Here we report on the identification of a galectin-like molecule, galectin-12, in a human adipose tissue cDNA library. The protein contained two potential carbohydrate-recognition domains with the second carbohydrate-recognition domain being less conserved compared with other galectins. In vitro translated galectin-12 bound to a lactosyl-agarose column far less efficiently than galectin-8. Galectin-12 mRNA was predominantly expressed in adipose tissue of human and mouse and in differentiated 3T3-L1 adipocytes. Caloric restriction and treatment of obese animals with troglitazone increased galectin-12 mRNA levels and decreased the average size of the cells in adipose tissue. The induction of galectin-12 expression by the thiazolidinedione, troglitazone, was paralleled by an increase in the number of apoptotic cells in adipose tissue. Immunocytochemical analysis revealed that galectin-12 was localized in the nucleus of adipocytes, and transfection with galectin-12 cDNA induced apoptosis of COS-1 cells. These results suggest that galectin-12, an adipose-expressed galectin-like molecule, may participate in the apoptosis of adipocytes.  相似文献   

16.
Galectins, a family of β-galactoside binding lectins, have recently emerged as novel regulators of tissue homeostasis. Galectin-7 is predominantly expressed in stratified epithelia, especially in epidermis. We report here the generation of galectin-7–deficient mice that are viable and do not display phenotypical abnormalities in skin structure or expression of epidermal markers. However, these mice show unique defects in the maintenance of epidermal homeostasis in response to environmental challenges. First, after UVB irradiation in vivo, the apoptotic response is prematurely triggered and lasts longer in the mutant epidermis. This result contrasts with the proapoptotic role that had been proposed for galectin-7. Second, wound-healing experiments in vivo revealed that galectin-7–deficient mice displayed a reduced reepithelialization potential compared with wild-type littermates. This effect could be attributed to a defect in cell migration. Because galectin-7 is located in the podosomes of keratinocytes migrating out of skin explants in culture, we propose that this glycan-binding protein may directly influence cell/extracellular matrix interactions. Finally, we also detected an unexpected intense hyperproliferative reaction consecutive to both types of stress in galectin-7–deficient mice. Together, these studies provide the first genetic evidence showing that galectin-7 can modulate keratinocyte apoptosis, proliferation, and migration during skin repair.  相似文献   

17.
Galectin-7 was initially described as a marker of epithelial differentiation expressed in the stratified epithelium of various tissues. Like other members of the galectin family, its expression level is often significantly altered in cancer cells. In breast cancer, its expression is significantly augmented in aggressive molecular subtypes, most notably in estrogen receptor-negative tumors and in cell lines with a basal-like phenotype. Studies using experimental mouse models have further shown high expression of galectin-7 was sufficient to increase the metastatic behavior of poorly metastatic breast cancer cells, rendering them more resistant to apoptosis. This expression pattern in breast cancer cells is unexpected because galectin-7 was originally identified as a p53-induced gene. To address this paradox, we have examined the molecular mechanisms regulating galectin-7 in breast cancer cells. Our results showed that transfection of breast cancer cells with expression vectors encoding mutant p53 was sufficient to induce galectin-7 at both mRNA and protein levels. Doxorubicin treatment of breast cancer cells harboring a mutant p53 also induced galectin-7. This induction was specific since knockdown of endogenous mutant p53 inhibited doxorubicin-induced galectin-7 expression. The p53-induced galectin-7 expression in breast cancer cells correlated with increased NF-κB activity and was inhibited by NF-κB inhibitors, indicating that the ability of mutant p53 to induce galectin-7 was dependent on NF-κB activity. The implication of NF-κB was further supported by data showing that NF-κB bound to the endogenous galectin-7 promoter and that TNFα-induced galectin-7 expression was abolished by NF-κB inhibitors. Taken together, our data provide an explanation to the observed high galectin-7 expression levels in cancer cells and suggest that galectin-7 could be part of a common pathway used by mutant p53 to promote cancer progression.  相似文献   

18.
The Sec1p family of proteins is required for vesicle-mediated protein trafficking between various organelles of the endomembrane system. This family includes Vps45p, which is required for transport to the vacuole in yeast (Saccharomyces cerevisiae). We have isolated a cDNA encoding a VPS45 homolog from Arabidopsis thaliana (AtVPS45). The cDNA is able to complement both the temperature-sensitive growth defect and the vacuolar-targeting defect of a yeast vps45 mutant, indicating that the two proteins are functionally related. AtVPS45p is a peripheral membrane protein that associates with microsomal membranes. Sucrose-density gradient fractionation demonstrated that AtVPS45p co-fractionates with AtELP, a potential vacuolar protein sorting receptor, implying that they may reside on the same membrane populations. These results indicate that AtVPS45p is likely to function in the transport of proteins to the vacuole in plants.  相似文献   

19.
To investigate the role of the prevacuolar secretion pathway in biofilm formation and virulence in Candida albicans, we cloned and analyzed the C. albicans homolog of the Saccharomyces cerevisiae prevacuolar trafficking gene PEP12. C. albicans PEP12 encodes a deduced t-SNARE that is 28% identical to S. cerevisiae Pep12p, and plasmids bearing C. albicans PEP12 complemented the abnormal vacuolar morphology and temperature-sensitive growth of an S. cerevisiae pep12 null mutant. The C. albicans pep12 Δ null mutant was defective in endocytosis and vacuolar acidification and accumulated 40- to 60-nm cytoplasmic vesicles near the plasma membrane. Secretory defects included increased extracellular proteolytic activity and absent lipolytic activity. The pep12Δ null mutant was more sensitive to cell wall stresses and antifungal agents than the isogenic complemented strain or the control strain DAY185. Notably, the biofilm formed by the pep12Δ mutant was reduced in overall mass and fragmented completely upon the slightest disturbance. The pep12Δ mutant was markedly reduced in virulence in an in vitro macrophage infection model and an in vivo mouse model of disseminated candidiasis. These results suggest that C. albicans PEP12 plays a key role in biofilm integrity and in vivo virulence.In Saccharomyces cerevisiae, distinct secreted marker proteins are trafficked differentially through a prevacuolar compartment (PVC) prior to exocytosis (14). Furthermore, prevacuolar protein sorting genes play an important role in cargo transport in the prevacuolar branch of the exocytic pathway in S. cerevisiae (13, 15). By isolating dense- and light-vesicle populations in S. cerevisiae vps1 sec6-4, vps4 sec6-4, and pep12 sec6-4 mutants, it was observed that mutants blocked in this prevacuolar pathway missort marker proteins that are normally found in high-density post-Golgi compartment vesicles into low-density vesicles (15). Gurunathan et al. (13) also demonstrated these findings for vps1 and pep12 mutants with a late secretory mutant (snc1) background similar to that of the sec6-4 strains. These results indicate that some exocytic cargo, including the conditionally regulated soluble secretory proteins invertase and acid phosphatase, are differentially sorted through a PVC prior to exocytosis in the model yeast S. cerevisiae.To study the prevacuolar branch of exocytosis in Candida albicans and its role in virulence, we have previously cloned and analyzed the C. albicans prevacuolar trafficking genes VPS1 and VPS4. We demonstrated that C. albicans VPS4 is required for extracellular secretion of Sap2p and Sap4-6p and for virulence in an in vivo model of disseminated candidiasis (19, 20). C. albicans VPS1 is required for Sap2p secretion and biofilm formation (4). Interestingly, although the C. albicans null mutant lacking VPS4 forms a biofilm that is denser than that formed by the isogenic reintegrant strain, the conditional mutant lacking VPS1 expression forms a patchy biofilm of reduced density (4, 34). Thus, it appears that interference with normal prevacuolar trafficking affects both the secretion of virulence-associated proteins and biofilm formation.S. cerevisiae PEP12 encodes a 288-amino-acid syntaxin which regulates docking of Golgi compartment-derived transport vesicles at the PVC (3). Pep12p interacts with the v-SNARE Vti1p, and overexpression of Pep12p suppresses extracellular missorting of carboxypeptidase in the vti1 mutant (37). The S. cerevisiae pep12 null mutant displays a temperature-sensitive growth defect and is characterized by an enlarged vacuole with morphology defined as class D (3). A search of the C. albicans genome database identified a structural homolog of S. cerevisiae PEP12. Thus, the experiments described below were designed to determine whether the C. albicans PEP12 homolog is functionally homologous to S. cerevisiae PEP12 and to investigate its role in secretion, biofilm formation, and virulence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号