首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains.

Methodology/Principal Findings

Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine.

Conclusion/Significance

Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.  相似文献   

2.
3.
Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and animals. A central step in disease progression is the accumulation of a misfolded form (PrP(Sc)) of the host encoded prion protein (PrP(C)) in neuronal and non-neuronal tissues. The involvement of peripheral tissues in preclinical states increases the risk of accidental transmission. On the other hand, detection of PrP(Sc) in non-neuronal easy-accessible compartments such as muscle may offer a novel diagnostic tool. Primate models have proven invaluable to investigate prion diseases. We have studied the deposition of PrP(Sc) in muscle and central nervous system of rhesus monkeys challenged with sporadic Creutzfeldt-Jakob disease (sCJD), variant CJD (vCJD) and bovine spongiform encephalopathy (BSE) in preclinical and clinical stage using biochemical and morphological methods. Here, we show the preclinical presence of PrP(Sc) in muscle and central nervous system of rhesus monkeys experimentally infected with vCJD.  相似文献   

4.
Bovine spongiform encephalopathy (BSE), the prion disease in cattle, was widely believed to be caused by only one strain, BSE-C. BSE-C causes the fatal prion disease named new variant Creutzfeldt-Jacob disease in humans. Two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H, have been discovered in several countries since 2004; their transmissibility and phenotypes in humans are unknown. We investigated the infectivity and human phenotype of BASE strains by inoculating transgenic (Tg) mice expressing the human prion protein with brain homogenates from two BASE strain-infected cattle. Sixty percent of the inoculated Tg mice became infected after 20 to 22 months of incubation, a transmission rate higher than those reported for BSE-C. A quarter of BASE strain-infected Tg mice, but none of the Tg mice infected with prions causing a sporadic human prion disease, showed the presence of pathogenic prion protein isoforms in the spleen, indicating that the BASE prion is intrinsically lymphotropic. The pathological prion protein isoforms in BASE strain-infected humanized Tg mouse brains are different from those from the original cattle BASE or sporadic human prion disease. Minimal brain spongiosis and long incubation times are observed for the BASE strain-infected Tg mice. These results suggest that in humans, the BASE strain is a more virulent BSE strain and likely lymphotropic.  相似文献   

5.
Polymorphisms in the coding region of the prion protein gene (PRNP) have been associated with the susceptibility and incubation period of prion diseases in humans and sheep. However, polymorphisms in this part of the bovine PRNP gene do not affect the classical bovine spongiform encephalopathy (BSE) susceptibility in cattle. Studies carried out in Germany have shown that insertion/deletion-type polymorphisms located in the promoter region of the bovine prion gene are possible genetic factors modulating BSE susceptibility by changing the level of PRNP expression. No such association was observed for atypical BSE cases; however, due to the rare nature of the disease, these results should be confirmed. Additionally, a single nonsynonymous mutation in PRNP codon 211 (E211K) was described in one H-type BSE case in the USA; however, it was not found in any other cases. Here, we performed genetic characterization of PRNP promoter indel variations and determined the polymorphism of open reading frames (ORFs) of PRNP and bovine prion-like Shadoo (SPRN) genes in six Polish atypical BSE cases and compared these results to the population of clinically healthy Polish Holstein cattle. No potentially pathogenic mutations were found in the PRNP ORF in atypical BSE-affected cattle, but our study showed a high frequency of deletions at the indel loci of PRNP promoter in these animals. Additionally, a rare sequence variation in the SPRN protein-coding sequence was found in one L-type atypical BSE-affected animal.  相似文献   

6.
7.
Prions are largely contained within the nervous and lymphoid tissue of transmissible spongiform encephalopathy (TSE) infected animals. However, following advances in diagnostic sensitivity, PrP(Sc), a marker for prion disease, can now be located in a wide range of viscera and body fluids including muscle, saliva, blood, urine and milk, raising concerns that exposure to these materials could contribute to the spread of disease in humans and animals. Previously we demonstrated low levels of infectivity in the liver of sheep experimentally challenged with bovine spongiform encephalopathy. In this study we show that PrP(Sc) accumulated in the liver of 89% of sheep naturally infected with scrapie and 100% of sheep challenged with BSE, at both clinical and preclinical stages of the disease. PrP(Sc) was demonstrated in the absence of obvious inflammatory foci and was restricted to isolated resident cells, most likely Kupffer cells.  相似文献   

8.

Background

Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) of cattle. Classical BSE is associated with ingestion of BSE-contaminated feedstuffs. H- and L-type BSE, collectively known as atypical BSE, differ from classical BSE by displaying a different disease phenotype and they have not been linked to the consumption of contaminated feed. Interestingly, the 2006 US H-type atypical BSE animal had a polymorphism at codon 211 of the bovine prion gene resulting in a glutamic acid to lysine substitution (E211K). This substitution is analogous a human polymorphism associated with the most prevalent form of heritable TSE in humans, and it is considered to have caused BSE in the 2006 US atypical BSE animal. In order to determine if this amino acid change is a heritable trait in cattle, we sequenced the prion alleles of the only known offspring of this animal, a 2-year-old heifer.

Principal Findings

Sequence analysis revealed that both the 2006 US atypical BSE animal and its 2-year-old heifer were heterozygous at bovine prion gene nucleotides 631 through 633 for GAA (glutamic acid) and AAA (lysine). Both animals carry the E211K polymorphism, indicating that the allele is heritable and may persist within the cattle population.

Conclusions

This is the first evidence that the E211K polymorphism is a germline polymorphism, not a somatic mutation, suggesting BSE may be transmitted genetically in cattle. In the event that E211K proves to result in a genetic form of BSE, this would be the first indication that all 3 etiologic forms of TSEs (spontaneous, hereditary, and infectious) are present in a non-human species. Atypical BSE arising as both genetic and spontaneous disease, in the context of reports that at least some forms of atypical BSE can convert to classical BSE in mice, suggests a cattle origin for classical BSE.  相似文献   

9.
In transmissible spongiform encephalopathies (TSEs), a group of fatal neurodegenerative disorders affecting many species, the key event in disease pathogenesis is the accumulation of an abnormal conformational isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). While the precise mechanism of the PrPC to PrPSc conversion is not understood, it is clear that host PrPC expression is a prerequisite for effective infectious prion propagation. Although there have been many studies on TSEs in mammalian species, little is known about TSE pathogenesis in fish. Here we show that while gilthead sea bream (Sparus aurata) orally challenged with brain homogenates prepared either from a BSE infected cow or from scrapie infected sheep developed no clinical prion disease, the brains of TSE-fed fish sampled two years after challenge did show signs of neurodegeneration and accumulation of deposits that reacted positively with antibodies raised against sea bream PrP. The control groups, fed with brains from uninfected animals, showed no such signs. Remarkably, the deposits developed much more rapidly and extensively in fish inoculated with BSE-infected material than in the ones challenged with the scrapie-infected brain homogenate, with numerous deposits being proteinase K-resistant. These plaque-like aggregates exhibited congophilia and birefringence in polarized light, consistent with an amyloid-like component. The neurodegeneration and abnormal deposition in the brains of fish challenged with prion, especially BSE, raises concerns about the potential risk to public health. As fish aquaculture is an economically important industry providing high protein nutrition for humans and other mammalian species, the prospect of farmed fish being contaminated with infectious mammalian PrPSc, or of a prion disease developing in farmed fish is alarming and requires further evaluation.  相似文献   

10.
11.

Background

The variability in the clinical or pathological presentation of transmissible spongiform encephalopathies (TSEs) in sheep, such as scrapie and bovine spongiform encephalopathy (BSE), has been attributed to prion protein genotype, strain, breed, clinical duration, dose, route and type of inoculum and the age at infection. The study aimed to describe the clinical signs in sheep infected with the BSE agent throughout its clinical course to determine whether the clinical signs were as variable as described for classical scrapie in sheep. The clinical signs were compared to BSE-negative sheep to assess if disease-specific clinical markers exist.

Results

Forty-seven (34%) of 139 sheep, which comprised 123 challenged sheep and 16 undosed controls, were positive for BSE. Affected sheep belonged to five different breeds and three different genotypes (ARQ/ARQ, VRQ/VRQ and AHQ/AHQ). None of the controls or BSE exposed sheep with ARR alleles were positive. Pruritus was present in 41 (87%) BSE positive sheep; the remaining six were judged to be pre-clinically infected. Testing of the response to scratching along the dorsum of a sheep proved to be a good indicator of clinical disease with a test sensitivity of 85% and specificity of 98% and usually coincided with weight loss. Clinical signs that were displayed significantly earlier in BSE positive cases compared to negative cases were behavioural changes, pruritic behaviour, a positive scratch test, alopecia, skin lesions, teeth grinding, tremor, ataxia, loss of weight and loss of body condition. The frequency and severity of each specific clinical sign usually increased with the progression of disease over a period of 16–20 weeks.

Conclusion

Our results suggest that BSE in sheep presents with relatively uniform clinical signs, with pruritus of increased severity and abnormalities in behaviour or movement as the disease progressed. Based on the studied sheep, these clinical features appear to be independent of breed, affected genotype, dose, route of inoculation and whether BSE was passed into sheep from cattle or from other sheep, suggesting that the clinical phenotype of BSE is influenced by the TSE strain more than by other factors. The clinical phenotype of BSE in the genotypes and breed studied was indistinguishable from that described for classical scrapie cases.  相似文献   

12.

Background

Bovine spongiform encephalopathy (BSE), a member of the transmissible spongiform encephalopathies (TSE), primarily affects cattle. Transmission is via concentrate feed rations contaminated with infected meat and bone meal (MBM). In addition to cattle, other food animal species are susceptible to BSE and also pose a potential threat to human health as consumption of infected meat products is the cause of variant Creutzfeldt-Jakob disease in humans, which is invariably fatal. In the UK, farmed and free ranging deer were almost certainly exposed to BSE infected MBM in proprietary feeds prior to legislation banning its inclusion. Therefore, although BSE has never been diagnosed in any deer species, a possible risk to human health remains via ingestion of cervine products. Chronic wasting disease (CWD), also a TSE, naturally infects several cervid species in North America and is spreading rapidly in both captive and free-ranging populations.

Results

Here we show that European red deer (Cervus elaphus elaphus) are susceptible to intra-cerebral (i/c) challenge with BSE positive cattle brain pool material resulting in clinical neurological disease and weight loss by 794–1290 days and the clinical signs are indistinguishable to those reported in deer with CWD. Spongiform changes typical of TSE infections were present in brain and accumulation of the disease-associated abnormal prion protein (PrPd) was present in the central and peripheral nervous systems, but not in lymphoid or other tissues. Western immunoblot analysis of brain material showed a similar glycosylation pattern to that of BSE derived from infected cattle and experimentally infected sheep with respect to protease-resistant PrP isoforms. However, the di-, mono- and unglycosylated bands migrated significantly (p < 0.001) further in the samples from the clinically affected deer when compared to BSE infected brains of cattle and sheep.

Conclusion

This study shows that deer are susceptible to BSE by intra-cerebral inoculation and display clinical signs and vacuolar pathology that are similar to those of CWD. These findings highlight the importance of preventing the spread to Europe of CWD from North America as this may necessitate even more extensive testing of animal tissues destined for human consumption within the EU. Although the absence of PrPd in lymphoid and other non-neurological tissues potentially limits the risk of transmission to humans, the replication of TSE agents in peripheral tissues following intra-cerebral challenge is often limited. Thus the assessment of risk posed by cervine BSE as a human pathogen or for environmental contamination should await the outcome of ongoing oral challenge experiments.
  相似文献   

13.
14.
《朊病毒》2013,7(5):461-469
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.  相似文献   

15.
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.  相似文献   

16.
The disease phenotype of bovine spongiform encephalopathy (BSE) and the molecular/ biological properties of its prion strain, including the host range and the characteristics of BSE-related disorders, have been extensively studied since its discovery in 1986. In recent years, systematic testing of the brains of cattle coming to slaughter resulted in the identification of at least two atypical forms of BSE. These emerging disorders are characterized by novel conformers of the bovine pathological prion protein (PrP(TSE)), named high-type (BSE-H) and low-type (BSE-L). We recently reported two Italian atypical cases with a PrP(TSE) type identical to BSE-L, pathologically characterized by PrP amyloid plaques and known as bovine amyloidotic spongiform encephalopathy (BASE). Several lines of evidence suggest that BASE is highly virulent and easily transmissible to a wide host range. Experimental transmission to transgenic mice overexpressing bovine PrP (Tgbov XV) suggested that BASE is caused by a prion strain distinct from the BSE isolate. In the present study, we experimentally infected Friesian and Alpine brown cattle with Italian BSE and BASE isolates via the intracerebral route. BASE-infected cattle developed amyotrophic changes accompanied by mental dullness. The molecular and neuropathological profiles, including PrP deposition pattern, closely matched those observed in the original cases. This study provides clear evidence of BASE as a distinct prion isolate and discloses a novel disease phenotype in cattle.  相似文献   

17.
A case of L-type-like atypical bovine spongiform encephalopathy was detected in 14-year-old Japanese black beef cattle (BSE/JP24). To clarify the biological and biochemical properties of the prion in BSE/JP24, we performed a transmission study with wild-type mice and bovinized transgenic mice (TgBoPrP). The BSE/JP24 prion was transmitted to TgBoPrP mice with the incubation period of 199.7 ± 3.4 days, which was shorter than that of classical BSE (C-BSE) (223.5 ± 13.5 days). Further, C-BSE was transmitted to wild-type mice with the incubation period of about 409 days, whereas BSE/JP24 prion inoculated mice showed no clinical signs up to 649 days. Severe vacuolation and a widespread and uniform distribution of PrPSc were pathologically observed in the brain of BSE/JP24 prion affected TgBoPrP mice. The molecular weight and glycoform ratio of PrPSc in BSE/JP24 were different from those in C-BSE, and PrPSc in BSE/JP24 exhibited weaker proteinase K resistance than that in C-BSE. These findings revealed that the BSE/JP24 prion has distinct biological and biochemical properties reported for that of C-BSE. Interestingly, a shorter incubation period was observed at the subsequent passage of the BSE/JP24 prion to TgBoPrP mice (152.2 ± 3.1 days). This result implies that BSE/JP24 prion has newly emerged and showed the possibility that L-type BSE prion might be classified into multiple strains.Key words: prion, atypical BSE, PrPSc  相似文献   

18.
The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.  相似文献   

19.
20.
Sheep can be experimentally infected with bovine spongiform encephalopathy (BSE), and the ensuing disease is similar to scrapie in terms of pathogenesis and clinical signs. BSE infection in sheep is an animal and human health concern. In this study, the transmission in BoPrP-Tg110 mice of prions from BSE-infected sheep was examined and compared to the transmission of original cattle BSE in cattle and sheep scrapie prions. Our results indicate no transmission barrier for sheep BSE prions to infect BoPrP-Tg110 mice, but the course of the disease is accelerated compared to the effects of the original BSE isolate. The shortened incubation period of sheep BSE in the model was conserved in subsequent passage in BoPrP-Tg110 mice, indicating that it is not related to infectious titer differences. Biochemical signature, lesion profile, and PrP(Sc) deposition pattern of both cattle and sheep BSE were similar. In contrast, all three sheep scrapie isolates tested showed an evident transmission barrier and further adaptation in subsequent passage. Taken together, those data indicate that BSE agent can be altered by crossing a species barrier, raising concerns about the virulence of this new prion towards other species, including humans. The BoPrP-Tg110 mouse bioassay should be considered as a valuable tool for discriminating scrapie and BSE in sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号