首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three nodulation genes, nodL, nodM and nodN, were isolated from Rhizobium leguminosarum and their DNA sequences were determined. The three genes are in the same orientation as the previously described nodFE genes and the predicted molecular weights of their products are 20,105 (nodL), 65,795 (nodM) and 18,031 (nodN). Analysis of gene regulation using operon fusions showed that nodL, nodM and nodN are induced in response to flavanone molecules and that this induction is nodD-dependent. In addition, it was shown that the nodM and nodN genes are in one operon which is preceded by a conserved 'nod-box' sequence, whereas the nodL gene is in the same operon as the nodFE genes. DNA hybridizations using specific gene probes showed that strongly homologous genes are present in Rhizobium trifolii but not Rhizobium meliloti or Bradyrhizobium japonicum. A mutation within nodL strongly reduced nodulation of peas, Lens and Lathyrus but had little effect on nodulation of Vicia species. A slight reduction in nodulation of Vicia hirsuta was observed with strains carrying mutations in nodM or nodN.  相似文献   

2.
Rhizobia synthesize mono- N -acylated chitooligosaccharide signals, called Nod factors, that are required for the specific infection and nodulation of their legume hosts. The biosynthesis of Nod factors is under the control of nodulation ( nod ) genes, including the nodABC genes present in all rhizobial species. The N -acyl substitution can vary between species and can play a role in host specificity. In Rhizobium meliloti , an alfalfa symbiont, the acyl chain is a C16 unsaturated or a (ω-1) hydroxylated fatty acid, whereas in Rhizobium tropici , a bean symbiont, it is vaccenic acid (C18:1). We constructed R. meliloti derivatives having a non-polar deletion of nodA , and carrying a plasmid with either the R. meliloti or the R. tropici nodA gene. The strain with the R. tropici nodA gene produced Nod factors acylated by vaccenic acid, instead of the C16 unsaturated or hydroxylated fatty acids characteristic of R. meliloti Nod factors, and infected and nodulated alfalfa with a significant delay. These results show that NodA proteins of R. meliloti and R. tropici specify the N -acylation of Nod factors by different fatty acids, and that allelic variation of the common nodA gene can contribute to the determination of host range.  相似文献   

3.
4.
Early stages of nodulation involve the exchange of signals between the bacterium and the host plant. Bacterial nodulation (nod) genes are required for Rhizobium spp. to synthesize lipooligosaccharide morphogens, termed Nod factors. The common nod genes encode enzymes that synthesize the factor core structure, which is modified by host-specific gene products. Here we show direct in vitro evidence that Rhizobium meliloti NodH, a host-specific nodulation gene, catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to the terminal 6-O position of Nod factors, and we show substrate requirements for the reaction. Our results indicate that polymerization of the chitooligosaccharide backbone likely precedes sulfation and that sulfation is not absolutely dependent on the presence or the particular structure of the N-acyl modification. NodH sulfation provides a tool for the enzymatic in vitro synthesis of novel Nod factors, or putative Nod factors intermediates, with high specific activity.  相似文献   

5.
Rhizobium bacteria synthesize signal molecules called Nod factors that elicit responses in the legume root during nodulation. Nod factors, modified N-acylated beta-(1,4)-N-acetylglucosamine, are synthesized by the nodulation (nod) gene products. We tested the ability of three Sinorhizobium meliloti nod gene products to modify Nod factor analogs with thio linkages instead of O-glycosidic bonds in the oligosaccharide backbone.  相似文献   

6.
Rhizobia are soil bacteria able to fix atmospheric nitrogen in symbiosis with leguminous plants. In response to a signal cascade coded by genes of both symbiotic partners, a specific plant organ, the nodule, is formed. Rhizobial nodulation (nod) genes trigger nodule formation through the synthesis of Nod factors, a family of chitolipooligosaccharides that are specifically recognized by the host plant at the first stages of the nodulation process. Here, we present the organization and sequence of the common nod genes from Rhizobium galegae, a symbiotic member of the RHIZOBIACEAE: This species has an intriguing phylogenetic position, being symbiotic among pathogenic agrobacteria, which induce tumors instead of nodules in plant shoots or roots. This apparent incongruence raises special interest in the origin of the symbiotic apparatus of R. galegae. Our analysis of DNA sequence data indicated that the organization of the common nod gene region of R. galegae was similar to that of Sinorhizobium meliloti and Rhizobium leguminosarum, with nodIJ downstream of nodABC and the regulatory nodD gene closely linked to the common nod operon. Moreover, phylogenetic analyses of the nod gene sequences showed a close relationship especially between the common nodA sequences of R. galegae, S. meliloti, and R. leguminosarum biovars viciae and trifolii. This relationship in structure and sequence contrasts with the phylogeny based on 16S rRNA, which groups R. galegae close to agrobacteria and separate from most other rhizobia. The topology of the nodA tree was similar to that of the corresponding host plant tree. Taken together, these observations indicate that lateral nod gene transfer occurred from fast-growing rhizobia toward agrobacteria, after which the symbiotic apparatus evolved under host plant constraint.  相似文献   

7.
Y Zhu  L S Pierson  rd    M C Hawes 《Plant physiology》1997,115(4):1691-1698
Reporter strains of soil-borne bacteria were used to test the hypothesis that chemicals released by root border cells can influence the expression of bacterial genes required for the establishment of plant-microbe associations. Promoters from genes known to be activated by plant factors included virE, required for Agrobacterium tumefaciens pathogenesis, and common nod genes from Rhizobium leguminosarum bv viciae and Rhizobium meliloti, required for nodulation of pea (Pisum sativum) and alfalfa (Medicago sativum), respectively. Also included was phzB, an autoinducible gene encoding the biosynthesis of antibiotics by Pseudomonas aureofaciens. The virE and nod genes were activated to different degrees, depending on the source of border cells, whereas phzB activity remained unaffected. The homologous interaction between R. leguminosarum bv viciae and its host, pea, was examined in detail. Nod gene induction by border cells was dosage dependent and responsive to environmental signals. The highest levels of gene induction by pea (but not alfalfa) border cells occurred at low temperatures, when little or no bacterial growth was detected. Detached border cells cultured in distilled water exhibited increased nod gene induction (ini) in response to signals from R. leguminosarum bv viciae.  相似文献   

8.
Abstract Six nod box regulatory sequences are present in the Rhizobium meliloti genome. We have analysed the DNA region located downstream of nod box n6, and identified three open reading frames, designated nolQa, nolQb and nolS . LacZ fusions in these ORFs are not induced by classical nod gene inducers, which indicates that their expression either is not under the control of the nod box, or involves another regulatory mechanism acting in conjunction with the NodD/nod box regulatory circuit. Mutations in this n6 locus result in a delay in nodule formation on a particular host, Medicago lupulina . As this region is not strictly conserved among different R. meliloti strains, nolQa, nolQb and nolS may constitute auxiliary nodulation genes, for which the selection pressure is limited to particular host plants.  相似文献   

9.
Medicago truncatula is a model legume plant that interacts symbiotically with Sinorhizobium meliloti, the alfalfa symbiont. This process involves a molecular dialogue between the bacterium and the plant. Legume roots exude flavonoids that induce the expression of a set of rhizobial genes, the nod genes, which are essential for nodulation and determination of the host range. In turn, nod genes control the synthesis of lipo-chito-oligosaccharides (LCOs), Nod factors, which are bacteria-to-plant signal molecules mediating recognition and nodule organogenesis. M. truncatula roots or seeds have been treated with Nod factors and hydroponically growing seedlings have been inoculated with a limiting population of S. meliloti. It has been shown that submicromolar concentrations of Nod factors increase the number of nodules per plant on M. truncatula. Compared with roots, this increase is more noticeable when seeds are treated. M. truncatula seeds are receptive to submicromolar concentrations of Nod factors, suggesting the possibility of a high affinity LCO perception system in seeds or embryos as well.  相似文献   

10.
Using radioactive acetate as a precursor, it was shown that the common nodABC genes of Rhizobium and Bradyrhizobium strains are involved in the production of one or more metabolites that are excreted into the growth medium. A rapid thin-layer chromatography (TLC) system has been developed to separate these so-called Nod metabolites that can then be visualized by autoradiography. Different patterns of Nod metabolites were observed in the tested strains of the cross-inoculation groups of R. leguminosarum bv. viceae, R. l. bv. trifolii, R. meliloti, and B. japonicum. Only Nod metabolites of R. meliloti became labeled when radioactive sulphate was present in the medium. The role of the other nodulation genes of R. l. bv. viceae in the production of the detected Nod metabolites was tested in further detail. In addition to the common nodABC genes, the nodFE and nodL genes are involved in the production of Nod metabolites. In contrast, the chromosomal background did not influence the number of detected Nod metabolites or their mobilities on TLC plates. Nod metabolites could also be produced and excreted in Escherichia coli cells in which the appropriate nodulation genes were expressed.  相似文献   

11.
The symbiosis between Rhizobium and legumes is highly specific. For example, R. meliloti elicits the formation of root nodules on alfalfa and not on vetch. We recently reported that R. meliloti nodulation (nod) genes determine the production of acylated and sulfated glucosamine oligosaccharide signals. We now show that the biochemical function of the major host-range genes, nodH and nodPQ, is to specify the 6-O-sulfation of the reducing terminal glucosamine. Purified Nod factors (sulfated or not) from nodH+ or nodH- strains exhibited the same plant specificity in a variety of bioassays (root hair deformations, nodulation, changes in root morphology) as the bacterial cells from which they were purified. These results provide strong evidence that the molecular mechanism by which the nodH and nodPQ genes mediate host specificity is by determining the sulfation of the extracellular Nod signals.  相似文献   

12.
The induction of plant defense-related responses by chitin oligomers and the Rhizobium meliloti lipo-chito-oligosaccharide nodulation signals (Nod factors) in Medicago cell cultures and roots was investigated by following the expression of genes encoding enzymes of the isoflavonoid biosynthetic pathway, such as chalcone synthase, chalcone reductase, isoflavone reductase, as well as genes encoding a pathogenesis-related protein and a peroxidase. In suspension-cultured cells, all genes except the peroxidase gene were induced by both the R. meliloti Nod factor NodRm-IV(C16:2,S) and chitin oligomers with a minimum of three sugar residues. However, activation of these genes was not elicited by the symbiotically inactive, desulfated NodRm-IV(C16:2). Moreover, the cells were more sensitive to the chitin oligosaccharides than to the Nod factor. Analysis of flavonoids in Medicago microcallus cultures revealed differences between cells treated with N -acetyl-chitotetraose and those treated with Nod factor and demonstrated increased production of the phytoalexin medicarpin in the presence of Nod factor. In Medicago roots, none of the tested genes was activated by the N -acetylchitotetraose, whereas the Nod factor at micro-molar concentration enhanced transient expression of the isoflavonoid biosynthetic genes. The differential responses to Nod factors and chitin oligomers suggest that Medicago cells possess distinct perception systems for these related molecules.  相似文献   

13.
Earlier, we showed that Rhizobium meliloti nodM codes for glucosamine synthase and that nodM and nodN mutants produce strongly reduced root hair deformation activity and display delayed nodulation of Medicago sativa (Baev et al., Mol. Gen. Genet. 228:113-124, 1991). Here, we demonstrate that nodM and nodN genes from Rhizobium leguminosarum biovar viciae restore the root hair deformation activity of exudates of the corresponding R. meliloti mutant strains. Partial restoration of the nodulation phenotypes of these two strains was also observed. In nodulation assays, galactosamine and N-acetylglucosamine could substitute for glucosamine in the suppression of the R. meliloti nodM mutation, although N-acetylglucosamine was less efficient. We observed that in nodules induced by nodM mutants, the bacteroids did not show complete development or were deteriorated, resulting in decreased nitrogen fixation and, consequently, lower dry weights of the plants. This mutant phenotype could also be suppressed by exogenously supplied glucosamine, N-acetylglucosamine, and galactosamine and to a lesser extent by glucosamine-6-phosphate, indicating that the nodM mutant bacteroids are limited for glucosamine. In addition, by using derivatives of the wild type and a nodM mutant in which the nod genes are expressed at a high constitutive level, it was shown that the nodM mutant produces significantly fewer Nod factors than the wild-type strain but that their chemical structures are unchanged. However, the relative amounts of analogs of the cognate Nod signals were elevated, and this may explain the observed host range effects of the nodM mutation. Our data indicate that both the nodM and nodN genes of the two species have common functions and confirm that NodM is a glucosamine synthase with the biochemical role of providing sufficient amounts of the sugar moiety for the synthesis of the glucosamine oligosaccharide signal molecules.  相似文献   

14.
In the Rhizobium-legume symbiosis, compatible bacteria and host plants interact through an exchange of signals: Host compounds promote the expression of bacterial biosynthetic nod (nodulation) genes leading to the production of a lipochito-oligosaccharide signal, the Nod factor (NF). The particular array of nod genes carried by a given species of Rhizobium determines the NF structure synthesized and defines the range of legume hosts by which the bacterium is recognized. Purified NF can induce early host responses even in the absence of live Rhizobium One of the earliest known host responses to NF is an oscillatory behavior of cytoplasmic calcium, or calcium spiking, in root hair cells, initially observed in Medicago spp. and subsequently characterized in four other genera (D.W. Ehrhardt, R. Wais, S.R. Long [1996] Cell 85: 673-681; S.A. Walker, V. Viprey, J.A. Downie [2000] Proc Natl Acad Sci USA 97: 13413-13418; D.W. Ehrhardt, J.A. Downie, J. Harris, R.J. Wais, and S.R. Long, unpublished data). We sought to determine whether live Rhizobium trigger a rapid calcium spiking response and whether this response is NF dependent. We show that, in the Sinorhizobium meliloti-Medicago truncatula interaction, bacteria elicit a calcium spiking response that is indistinguishable from the response to purified NF. We determine that calcium spiking is a nod gene-dependent host response. Studies of calcium spiking in M. truncatula and alfalfa (Medicago sativa) also uncovered the possibility of differences in early NF signal transduction. We further demonstrate the sufficiency of the nod genes for inducing calcium spiking by using Escherichia coli BL21 (DE3) engineered to express 11 S. meliloti nod genes.  相似文献   

15.
A Rhizobium meliloti DNA region (nodD1) involved in the regulation of other early nodulation genes has been delimited by directed Tn5 mutagenesis and its nucleotide sequence has been determined. The sequence data indicate a large open reading frame with opposite polarity to nodA, -B and -C, coding for a protein of 308 (or 311) amino acid residues. Tn5 insertion within the gene caused a delay in nodulation of Medicago sativa from four to seven days. Hybridization of nodD1 to total DNA of Rhizobium meliloti revealed two additional nodD sequences (nodD2 and nodD3) and both were localized on the megaplasmid pRme41b in the vicinity of the other nod genes. Genetic and DNA hybridization data, combined with nucleotide sequencing showed that nodD2 is a functional gene, while requirement of nodD3 for efficient nodulation of M. sativa could not be detected under our experimental conditions. The nodD2 gene product consists of 310 amino acid residues and shares 86.4% homology with the nodD1 protein. Single nodD2 mutants had the same nodulation phenotype as the nodD1 mutants, while a double nodD1-nodD2 mutant exhibited a more severe delay in nodulation. These results indicate that at least two functional copies of the regulatory gene nodD are necessary for the optimal expression of nodulation genes in R. meliloti.  相似文献   

16.
Symbiotic DNA sequences involved in nodulation by Rhizobium must include genes responsible for recognizing homologous hosts. We sought these genes by mobilizing the symbiotic plasmid of a broad host-range Rhizobium MPIK3030 (= NGR234) that can nodulate Glycine max, Psophocarpus tetragonolobus, Vigna unguiculata, etc., into two Nod- Rhizobium mutants as well as into Agrobacterium tumefaciens. Subsequently, cosmid clones of pMPIK3030a were mobilized into Nod+ Rhizobium that cannot nodulate the chosen hosts. Nodule development was monitored by examining the ultrastructure of nodules formed by the transconjugants. pMPIK3030a could complement Nod- and Nif- deletions in R. leguminosarum and R. meliloti as well as enable A. tumefaciens to nodulate. Three non-overlapping sets of cosmids were found that conferred upon a slow-growing Rhizobium species, as well as on R. loti and R. meliloti, the ability to nodulate Psophocarpus and Vigna, thus pointing to the existence of three sets of host-specificity genes. Recipients harboring these hsn regions had truly broadened host-range since they could nodulate both their original hosts as well as MPIK3030 hosts.  相似文献   

17.
Rhizobium meliloti produces lipochitooligosaccharide nodulation NodRm factors that are required for nodulation of legume hosts. NodRm factors are O-acetylated and N-acylated by specific C16-unsaturated fatty acids. nodL mutants produce non-O-acetylated factors, and nodFE mutants produce factors with modified acyl substituents. Both mutants exhibited a significantly reduced capacity to elicit infection thread (IT) formation in alfalfa. However, once initiated, ITs developed and allowed the formation of nitrogen-fixing nodules. In contrast, double nodF/nodL mutants were unable to penetrate into legume hosts and to form ITs. Nevertheless, these mutants induced widespread cell wall tip growth in trichoblasts and other epidermal cells and were also able to elicit cortical cell activation at a distance. NodRm factor structural requirements are thus clearly more stringent for bacterial entry than for the elicitation of developmental plant responses.  相似文献   

18.
It is known that the Rhizobium galegae genomes contain megaplasmids. The suicide vector pSUP2111 with nifH gene of R. meliloti was introduced into the strains CIAM 0703 and CIAM 0711 of R. galegae inducing effective nodules on Galega orientalis plants. The formation of self-transmissible megaplasmids was observed. The megaplasmid transfer into non-nodulating R. meliloti mutants resulted in partial complementation of the nodulation defect in recipient strains though only one transconjugant showed the nitrogen-fixing activity in symbiosis with alfalfa and another one in symbiosis with G. orientalis plants. Among the Agrobacterium strains harbouring R. galegae megaplasmids there were four classes of transconjugants: (1) Nod+ Fix- in symbiosis with goat's rue plants (three strains); (2) Nod+ Fix- on Medicago sativa (two strains); (3) Nod+ Fix+ on M. sativa (five strains); (4) Nod- with both plant hosts (11 strains).  相似文献   

19.
20.
Flavonoids play critical roles in legume–rhizobium symbiosis. However, the role of individual flavonoid compounds in this process has not yet been clearly established. We silenced different flavonoid-biosynthesis enzymes to generate transgenic Medicago truncatula roots with different flavonoid profiles. Silencing of chalcone synthase, the key entry-point enzyme for flavonoid biosynthesis led to flavonoid-deficient roots. Silencing of isoflavone synthase and flavone synthase led to roots deficient for a subset of flavonoids, isoflavonoids (formononetin and biochanin A) and flavones (7,4'-dihydroxyflavone), respectively. When tested for nodulation by Sinorhizobium meliloti , flavonoid-deficient roots had a near complete loss of nodulation, whereas flavone-deficient roots had reduced nodulation. Isoflavone-deficient roots nodulated normally, suggesting that isoflavones might not play a critical role in M. truncatula nodulation, even though they are the most abundant root flavonoids. Supplementation of flavone-deficient roots with 7, 4'-dihydroxyflavone, a major inducer of S. meliloti nod genes, completely restored nodulation. However, the same treatment did not restore nodulation in flavonoid-deficient roots, suggesting that other non- nod gene-inducing flavonoid compounds are also critical to nodulation. Supplementation of roots with the flavonol kaempferol (an inhibitor of auxin transport), in combination with the use of flavone pre-treated S. meliloti cells, completely restored nodulation in flavonoid-deficient roots. In addition, S. meliloti cells constitutively producing Nod factors were able to nodulate flavone-deficient roots, but not flavonoid-deficient roots. These observations indicated that flavones might act as internal inducers of rhizobial nod genes, and that flavonols might act as auxin transport regulators during nodulation. Both these roles of flavonoids appear critical for symbiosis in M. truncatula .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号