首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Expression of a chimeric gene encoding the coat protein (CP) of tobacco mosaic virus (TMV) in transgenic tobacco plants confers resistance to infection by TMV. We investigated the spread of TMV within the inoculated leaf and throughout the plant following inoculation. Plants that expressed the CP gene [CP(+)] and those that did not [CP(-)] accumulated equivalent amounts of virus in the inoculated leaves after inoculation with TMV-RNA, but the CP(+) plants showed a delay in the development of systemic symptoms and reduced virus accumulation in the upper leaves. Tissue printing experiments demonstrated that if TMV infection became systemic, spread of virus occurred in the CP(+) plants essentially as it occurred in the CP(-) plants although at a reduced rate. Through a series of grafting experiments, we showed that stem tissue with a leaf attached taken from CP(+) plants prevented the systemic spread of virus. Stem tissue without a leaf had no effect on TMV spread. All of these findings indicate that protection against systemic spread in CP(+) plants is caused by one or more mechanisms that, in correlation with the protection against initial infection upon inoculation, result in a phenotype of resistance to TMV.  相似文献   

3.
We analyzed, with respect to heat shock proteins (HSPs), systemically reacting tobacco leaves inoculated with Tobacco mosaic virus (TMV), wild-type vulgare, and temperature-sensitive coat protein (CP) mutants Ni 118 (P20L) and flavum (D19A), kept at 23 or 30 degrees C. HSP18 and HSP70 mRNAs and proteins were induced with temperature-sensitive CP mutants after 1 to 2 days at 30 degrees C. After 4 to 6 days, HSP70 was also induced at 23 degrees C. The induction of HSPs paralleled the amount of insoluble TMV CP in leaf extracts, indicating that denatured TMV CP by itself induces a heat-shock response.  相似文献   

4.
《Seminars in Virology》1993,4(6):349-356
The resistance of transgenic plants express genes encoding viral coat proteins to infection by the viruses from which the genes are derived was termed coat protein-mediated resistance (CP-MR) and has been demonstrated for a variety of virus/host combinations. The mechanism of CP-MR is perhaps best understood in the tobacco/TMV system. CP-MR against TMV requires accumulation of CP and does not seem to involve the induction of plant defense mechanisms. The resistance appears to be mainly based on the inhibition of virion disassembly in transgenic cells although there is evidence that a later step of infection is also affected. CP-MR of tobacco to TMV shares some features with classical cross-protection and with CP-MR in some, but not all other host/virus combinations.  相似文献   

5.
Oligochitosan (OC) can regulate plant defense responses in many aspects, but the basic signal transduction pathway is still unclear. In this study, we used transgenic (TG) tobacco (Nicotiana Tabacum var. Samsun NN) as plant material whose oligochitosan induced protein kinase (OIPK) gene was inhibited by antisense transformation, to study the role of OIPK in tobacco defense reactions. The results showed that OIPK could increase tobacco resistance against tobacco mosaic virus (TMV), in that wild-type (WT) tobacco showed longer lesion appearance time, higher lesion inhibition ratio, smaller average final lesion diameter and lower average final lesion area percent to whole leaf area. It led us to analyze some pathogenesis related (PR) enzymes' activities and mRNA level, which played roles in tobacco resistance against TMV. We found that phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were positively related to OIPK, but not polyphenol oxidase (PPO). It was also demonstrated that OIPK mRNA could be induced by OC, wound and TMV infection. In addition, OIPK could up-regulated three PR genes, PAL, chitinase (CHI) and β-1, 3-glucanase (GLU) mRNA level to different extent. Taken together, these results implied that OIPK could function in tobacco resistance against both biotic and abiotic stress, possibly via various PR proteins.  相似文献   

6.
The interaction between tobacco mosaic virus (TMV) and tobacco harbouring the N gene is a classical system for studying gene-for-gene interactions in disease resistance. The N gene confers resistance to TMV by mediating defence responses that function to limit viral replication and movement. We isolated the N gene and determined that N belongs to the nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) class of plant disease resistance genes, and encodes both full-length and truncated proteins. Sequence homologies and mutagenesis studies indicated a signalling role for the N protein similar to that seen for proteins involved in defence responses in insects and mammals. The N gene confers resistance to TMV in transgenic tomato, demonstrating the use of the NBS-LRR class of disease resistance genes in engineering crop resistance. From the pathogen side of this interaction, the TMV 126 kDa replicase protein has been implicated as the avirulence factor that triggers N-mediated defence responses. We employed Agrobacterium-mediated expression strategies to demonstrate that expression of the putative helicase region of the replicase protein is sufficient to elicit N-mediated defences. The thermosensitivity of the N-mediated response to TMV is retained when induced by expression of this replicase fragment. Thus, both components of this gene-for-gene interaction are now available for studies that address the molecular mechanisms involved in N-mediated TMV resistance.  相似文献   

7.
In 1986 we reported that transgenic plants which accumulate the coat protein of tobacco mosaic virus (TMV) are protected from infection by TMV, and by closely related tobamoviruses. The phenomenon is referred to as coat-protein-mediated resistance (CP-MR), and bears certain similarities to cross protection, a phenomenon described by plant pathologists early in this century. Our studies of CP-MR against TMV have demonstrated that transgenically expressed CP interferes with disassembly of TMV particles in the inoculated transgenic cell. However, there is little resistance to local, cell-to-cell spread of infection. CP-MR involves interaction between the transgenic CP and the CP of the challenge virus, and resistance to TMV is greater than to tobamo viruses that have CP genes more distantly related to the transgene. Using the known coordinates of the three-dimensional structure of TMV we developed mutant forms of CP that have stronger inter-subunit interactions, and confer increased levels of CP-MR compared with wild-type CP. Similarly, it is predicted that understanding the cellular and structural basis of CP-MR will lead to the development of variant CP transgenes that each can confer high levels of resistance against a range of tobamoviruses.  相似文献   

8.
9.
During the hypersensitive response (HR), plants accumulate reactive oxygen species (ROS) that are likely generated at least in part by an NADPH oxidase similar to that found in mammalian neutrophils. An essential regulator of mammalian NADPH oxidase is the small GTP-binding protein Rac. To investigate whether Rac also regulates the pathogen-induced oxidative burst in plants, a dominant negative form of the rice OsRac1 gene was overexpressed in tobacco carrying the N resistance gene. Following infection with Tobacco mosaic virus (TMV), DN-OsRacl plants developed smaller lesions than wild-type plants, accumulated lower levels of lipid peroxidation products, and failed to activate expression of antioxidant genes. These results, combined with the demonstration that superoxide and hydrogen peroxide levels were reduced in DN-OsRacl tobacco developing a synchronous HR triggered by transient expression of the TMV p50 helicase domain or the Pto and AvrPto proteins, suggest that ROS production is impaired. The dominant negative effect of DN-OsRacl could be rescued by transiently overexpressing the wild-type OsRac1 protein. TMV-induced salicylic acid accumulation also was compromised in DN-OsRacl tobacco. Interestingly, while systemic acquired resistance to TMV was not impaired, nonhost resistance to Pseudomonas syringae pv. maculicola ES4326 was suppressed. Thus, the effect DN-OsRac1 expression exerts on the resistance signaling pathway appears to vary depending on the identity of the inoculated pathogen.  相似文献   

10.
11.
12.
Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi.  相似文献   

13.
To examine the role of reactive oxygen species (ROS) in the signal transduction that leads to hypersensitive cell death, we used a previously established system in which a xylanase from Trichoderma viride (TvX) induces an oxidative burst and cell death in a culture of tobacco cells. Diphenylene iodonium and N-Acetyl-L-cysteine known as an inhibitor of NADPH oxidase and a scavenger of superoxides, respectively, and catalase inhibited the oxidative burst but did not inhibit the induction of cell death. We also found that inhibitors of serine proteases inhibited TvX-induced cell death. These results suggest that there is a signaling pathway in which a serine protease might be responsible for the signal transduction, which is independent of the oxidative burst, that leads to the hypersensitive cell death of tobacco cells.  相似文献   

14.
We characterized pharmacologically the hypersensitive cell death of tobacco BY-2 cells that followed treatments with Escherichia coli preparations of INF1, the major secreted elicitin of the late blight pathogen Phytophthora infestans. INF1 elicitin treatments resulted in fragmentation and 180 bp laddering of tobacco DNA as early as 3 h post-treatment. INF1 elicitin also induced rapid accumulation of H2O2 typical of oxidative burst, and the expression of defense genes such as phenylalanine ammonia-lyase (PAL) gene at 1 h and 3 h after elicitin treatment, respectively. To investigate the involvement of the oxidative burst and/or the expression of defense genes in the signal transduction pathways leading to hypersensitive cell death, we analyzed the effect of several chemical inhibitors of signal transduction pathways on the various responses. The results indicated that (a) the cell death required serine proteases, Ca2+ and protein kinases, (b) the oxidative burst was involved in Ca2+ and protein kinase mediated pathways, but elicitin-induced AOS was neither necessary nor sufficient for cell death and PAL gene expression, and (c) the signaling pathway of PAL gene expression required protein kinases. These results suggest that the three signal transduction pathways leading to cell death, oxidative burst and expression of defense genes branch in the early stages that follow elicitin recognition by tobacco cells.  相似文献   

15.
In tobacco (Nicotiana tabacum L.) plants of hypersensitive cv. Samsun NN, a capability of necrosis lesion formation and protein patterns were studied after induction of antiviral resistance by defense responses activators (DRA) (arachidonic acid, ubiquinone 50, and vitamin E) and by infection with tobacco mosaic virus (TMV). DRA and TMV improved both local and systemic leaf resistance to TMV. Native protein electrophoresis demonstrated differences in the composition of leaf proteins extracted under acidic and alkaline conditions. SDS-PAGE revealed proteins accumulated during the development of systemic antiviral resistance after lower leaf treatments with DRA and of local resistance induced by pretreatment with TMV. It was shown that various DRA affected protein patterns similarly, whereas TMV infection resulted in other changes. It is supposed that different pathways function in tobacco plants during induction of systemic resistance by DRA and TMV infection.  相似文献   

16.
Ultrastructural responses of tobacco cells infected with a newly discovered satellite virus (STMV) that has an isometric morphology and is associated with rigid rodshaped tobacco mosaic virus (TMV) were studied in situ. In cells infected with TMV alone,TMV particles occurred as crystalline arrays in the cytoplasm and were usually associated with TMV-characteristic X bodies. In cells infected with both TMV and STMV, particles of STMV occurred only in cells that contained TMV particles, which suggests a correlation between the satellite and helper virus presence. However, the replication and/or accumulation sites of STMV appear to be independent from its helper virus. Unlike TMV particles, STMV particles were associated with several cytopathic structures such as granular inclusions, membranous vesicles of 50–80 nm, and myelin-like bodies which were all bounded by a single common membrane, No X bodies occurred in cells containing STMV particles, and the mitochondria possessed abnormal tubular structures containing flocculent material.  相似文献   

17.
Recently, the helicase domain of the Tobacco mosaic virus (TMV)-U1 replicase proteins (designated MOREHEL:U1) was identified as the elicitor of the N gene-mediated hypersensitive response (HR) in tobacco. In this study, we used agroinfiltration to express the equivalent MOREHEL domain of the non-HR-inducing tobamovirus strain TMV-Ob. It appeared that this MOREHEL:Ob sequence did not elicit a HR in N gene-carrying tobacco. Both MOREHEL sequences were divided into eight subdomains, and chimeras of MOREHEL sequences from U1 and Ob were constructed. Expression of these chimeric MOREHEL sequences revealed that, in the TMV-U1 MOREHEL sequence, at least four domains involved in full HR induction were present. The presence of at least three of these four domains seems a minimal requirement for HR induction. Two additional domains may play a minor role in HR induction. To study the elicitor function of the chimeras during the TMV life cycle, chimeric MOREHEL domains were introduced into full-length TMV cDNA clones. These constructs, however, were unable to establish an infection in Nicotiana benthamiana or Nicotiana tabacum plants.  相似文献   

18.
Zhang W  Yang X  Qiu D  Guo L  Zeng H  Mao J  Gao Q 《Molecular biology reports》2011,38(4):2549-2556
Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.  相似文献   

19.
Reactive oxygen species (ROS) play a crucial role in many cellular responses and signaling pathways, including the oxidative burst defense response to pathogens. We have examined very early events in cryptogein-induced ROS production in tobacco (Nicotiana tabacum) Bright Yellow-2 suspension cells. Using Amplex Red and Amplex Ultra Red reagents, which report real-time H2O2 accumulation in cell populations, we show that the internal signal for H2O2 develops more rapidly than the external apoplastic signal. Subcellular accumulation of H2O2 was also followed in individual cells using the 2',7'-dichlorofluorescein diacetate fluorescent probe. Major accumulation was detected in endomembrane, cytoplasmic, and nuclear compartments. When cryptogein was added, the signal developed first in the nuclear region and, after a short delay, in the cell periphery. Interestingly, isolated nuclei were capable of producing H2O2 in a calcium-dependent manner, implying that nuclei can serve as a potential active source of ROS production. These results show complex spatial compartmentalization for ROS accumulation and an unexpected temporal sequence of events that occurs after cryptogein application, suggesting novel intricacy in ROS-signaling cascades.  相似文献   

20.
根据对TMV高效复制和基因表达的顺式作用元件的分析,在体外重组包装了2个缺失型TMV粒子:TMVRP和TMVCP。前者缺失了TMV外壳蛋白CP基因的3′端及后序区域,后者缺失了大部分复制酶基因。把两者分别或共同电击感染烟草原生质体:1.用CP抗体进行免疫印渍检测,单独感染的原生质体内的CP在16小时内无增加,而在共同感染的原生质体内,CP在感染2小时后就开始明显增加。2.用RT一两次PCR法专一地检测新生负链RNA的合成情况,在单独感染的原生质体内没有检测到,但在混合感染的原生质体内在感染1小时后就检测到CP基因特异的负链RNA的形成,并用Southern杂交得到进一步验证。这些结果表明,复制酶缺失型TMVCP内的CP基因不能表达,但可以在TMVRP存在时,通过其所表达的复制酶互补作用得到复制从而有效表达.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号