首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The porcine gene for luteinizing hormone/choriogonadotropin receptor (LHCGR) was localized to chromosome 3q2.2----q2.3 using radioactive and nonradioactive in situ hybridization. A computer-assisted image-analysis system was developed which facilitated detection of the position of silver grains and fluorescent spots on the chromosomes after in situ hybridization. Compared with autoradiographic visualization, the nonisotopic procedure proved to be more rapid, precise, and highly specific; however, nonradiographic in situ hybridization was much less efficient than the autoradiographic technique for the detection of unique DNA sequences with small probes. From these results and published gene-mapping data, it was concluded that the synteny between LHCGR and MDH1 observed in man is conserved in the pig genome.  相似文献   

2.
In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average ten times that of background binding. This method is rapid and possesses the potential to allow precise ultrastructual localization of DNA sequences in chromosomes and chromatin.  相似文献   

3.
Summary The cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes with high specificity to individual chromosomes (chromosomes 3, 11, 17, 18, and X) were in situ hybridized to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms of hybridization intensity with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences provided the evidence for a high resolution power of the in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes has a variable amount of alphasatellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as a new general approach to analysis of chromosome heteromorphisms in man.  相似文献   

4.
Summary The chromosome region 5q22 harbouring the putative gene associated with adenomatous polyposis coli (APC) was microdissected and microcloned from GTG-banded human metaphase chromosomes. In order to determine the precise regional localization of the microdissected material, we used polymerase chain reaction amplified microclones as a bulk-probe in nonradioactive chromosomal in situ suppression hybridization of human metaphase spreads. Specific in situ hybridization signals were obtained on the long arm of chromosome 5 in accordance with the chromosomal region excised for the cloning procedure. The application of this detection system should provide a rapid and powerful tool for analyzing patients with translocations or microdeletions of a given chromosome region.  相似文献   

5.
The hybridization of 5S and 28S ribosomal RNAs to human fibroblast and leukocyte cells was used as a model system to quantitate the technique of in situ hybridization for human diploid cell types. Quantitation consisted of counting (scoring) the number of grains formed over both interphase nuclei and metaphase chromosomes on slides after various hybridization procedures. The average number of grains/nucleus per slide was then used to determine hybridization percentages. As with nitrocellulose filter hybridizations the kinetics of in situ hybridizations can be fit with a single first-order rate constant. However, the in situ hybridization rate was approximately 10 times slower than the corresponding filter hybridization rate. The efficiency of in situ hybridization was found to range between 5 and 15% for both leukocyte and fibroblast cell types and for both metaphase and interphase nuclei. Determination of the parameters of the in situ hybridization reaction of ribosomal RNAs to diploid chromosomes define the experimental conditions needed for the localization of single copy genes to diploid chromosomes.  相似文献   

6.
Cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes of high specificity to individual chromosomes (chromosomes 3, 11, 17, 18 and X) were hybridized in situ to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in definite heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The significant interindividual differences in relative copy number of alpha-satellite DNA have been detected. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms, as shown by intensity of hybridization with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences gives evidence for a high resolution power of in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes is variable for amount of alpha-satellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as novel general approach to analysis of chromosome heteromorphisms in man.  相似文献   

7.
Crepis capillaris (2n=6) is an excellent plant for the assay of chromosome aberrations after mutagenic treatment. It has simple karyotype: three pairs of morphologically distinct and relatively large chromosomes. The frequency of structural chromosome aberrations and micronuclei in root meristem cells has been used for evaluation of the genotoxicity of chemicals and environmental pollutants. The introduction of fluorescence in situ hybridization method allows more detailed detection and localization of chromosomal rearrangements not only in mitotic but also in interphase nuclei. We demonstrate a few examples of the detection of chromosomal aberrations using rDNA and telomeric sequences as probes for in situ hybridization to C. capillaris chromosomes.  相似文献   

8.
The sensitivity of fluorescence in situ hybridization (FISH) for mapping plant chromosomes of single-copy DNA sequences is limited. We have adapted for plant cytogenetics a new signal-amplification method termed tyramide-FISH (Tyr-FISH). Until present this technique has only been applied to human chromosomes. The method is based on enzymatic deposition of fluorochrome-conjugated tyramide. With Tyr-FISH it was possible to detect target T-DNA sequences on plant metaphase chromosomes as small as 710 bp without using a cooled CCD camera. Short detection time and high sensitivity, in combination with a low background, make the Tyr-FISH method very suitable for routine application in plant cytogenetic research. With Tyr-FISH we analysed the position of T-DNA inserts in transgenic shallots. We found that the inserts were preferentially located in the distal region of metaphase chromosomes. Sequential fluorescence in situ hybridization with a 375 bp satellite sequence suggested that a specific T-DNA insert was located within the satellite sequence hybridization region on a metaphase chromosome. Analysis of less-condensed prophase and interphase chromosomes revealed that the T-DNA was integrated outside the satellite DNA-hybridization region in a more proximal euchromatin region.  相似文献   

9.
Summary A non-radioactive in situ hybridization technique is described which allows the simultaneous detection of different DNA sequences. To demonstrate the feasibility of the proccdure, metaphases and interphase nuclei of a human-mouse somatic cell hybrid were simultaneously hybridized with mercurated total human DNA and a biotinylated mouse satellite DNA probe. After the hybridization, the probes were detected immunocytochemically using two different and independent affinity systems. By this approach we visualized the two DNA target sequences in metaphase chromosomes and in interphase nuclei with FITC and TRITC fluorescence, or blue (alkaline phosphatase) and brown (peroxidase) precipitated enzyme products. This method not only allows detection of intact chromosomes but also the visualization of rearrangements between parts of human and mouse chromosomes. Furthermore, the technique demonstrates the high topological resolution of nonradioactive in situ hybridizations.This investigation was supported in part by FUNGO, Foundation of Medical Scientific Research in The Netherlands (grant nr 13-54-21)  相似文献   

10.
The human gene for ubiquitin-activating enzyme E1 (UBE1) was localized by a direct mapping system that combined fluorescence in situ hybridization with replicated R-bands on prometaphase chromosomes. The fluorescent signals were localized to Xp11.3----p11.23. Simple procedures for the detection of R-bands are also described.  相似文献   

11.
The technique of in situ hybridization to both meiotic and mitotic chromosomes of Rumex acetosa is described. Differences in the efficiency of signal detection were observed between the two types of material. The implications of these results for in situ hybridization to other plant species are explored.  相似文献   

12.
M Nenno  K Schumann  W Nagl 《Génome》1994,37(6):1018-1021
This is the first report of fluorescence in situ hybridization (FISH) on plant polytene chromosomes. Different protease pretreatments have been tested to improve fluorescence in situ hybridization FISH on polytene chromosomes of a plant, Phaseolus coccineus, with the aim to enable the detection of low-copy genes. The structural preservation of the chromosomes and the distinctness of the FISH signals were comparatively analysed with a probe for the ribosomal RNA genes after digestion with pepsin and trypsin. The pepsin pretreatment resulted in a general loosening of chromatin with good conservation of chromosome morphology and an increased number and density of signal points. The six nucleolus organizers exhibited significant differences in condensation. The pretreatment with pepsin enabled the detection of the low-copy genes encoding the seed storage protein phaseolin.  相似文献   

13.
We tested DNA probes directly labeled by fluorescently labeled nucleotides (Cy3-dCTP, Cy5-dCTP, FluorX-dCTP) for high resolution uni- and multicolor detection of human chromosomes and analysis of centromeric DNA organization by in situ hybridization. Alpha-satellite DNA probes specific to chromosomes 1, 2, 3, 4 + 9, 5 + 19, 6, 7, 8, 10, 11, 13 + 21, 14 + 22, 15, 16, 17, 18, 20, 22, X and Y were suitable for the accurate identification of human chromosomes in metaphase and interphase cells. Cy3-labeled probes had several advantages: (1) a high level of fluorescence (5–10 times more compared with fluorescein-labeled probes); (2) a low level of fluorescence in solution, allowing the detection of target chromosomes in situ during hybridization without the washing of slides; and (3) high resistance to photobleaching during prolonged (1-2 h) exposure to strong light, thus allowing the use of a high energy mercury lamp or a long integration time during image acquisition in digital imaging microscopy for the determination of weak signals. For di- and multicolor fluorescence in situ hybridization (FISH), we successfully used different combinations of directly fluorophorated probes with preservation of images by conventional microscopy or by digital imaging microscopy. FluorX and Cy3 dyes allowed the use of cosmid probes for mapping in a one-step hybridization experiment. Cyanine-labeled fluorophorated DNA probes offer additional possibilities for rapid chromosome detection during a simple 15-min FISH procedure, and can be recommended for basic research and clinical studies, utilizing FISH.  相似文献   

14.
Nonradioactive in situ hybridization techniques are becoming increasingly important tools for rapid analysis of the topological organization of DNA and RNA sequences within cells. Prerequisite for further advances with these techniques are multiple labeling and detection systems for different probes. Here we summarize our results with a recently developed labeling and detection system. The DNA probe for in situ hybridization is modified with digoxigenin-labeled deoxyuridine-triphosphate. Digoxigenin is linked to dUTP via an 11-atom linear spacer (Dig-[11]-dUTP). Labeled DNA probes were hybridized in situ to chromosome preparations. The hybridization signal was detected using digoxigenin-specific antibodies covalently coupled to enzyme markers (alkaline phosphatase or peroxidase) or to fluorescent dyes. Color reactions catalyzed by the enzymes resulted in precipitates located on the chromosomes at the site of probe hybridization. This was verified by hybridizing DNA probes of known chromosomal origin. The signals were analyzed by bright field, reflection contrast and fluorescence microscopy. The results indicate that the new technique gives strong signals and can also be used in combination with other systems (e.g., biotin) to detect differently labeled DNA probes on the same metaphase plate.  相似文献   

15.
Localization of the SM alpha family of repeated DNA and the rDNA repeat on the chromosomes of Schistosoma mansoni by in situ hybridization is presented. Biotinylated DNA was hybridized to target chromosomes and hybridization was detected using either alkaline phosphatase-labeled avidin or fluorescein-labeled avidin and biotinylated anti-avidin antibody. Hybridization detection using a fluorescein conjugate was more specific and sensitive with less background noise than detection with alkaline phosphatase conjugates. SM alpha hybridizing sequences were found dispersed throughout the genome, hybridizing to the sex chromosomes and autosomes. The SM alpha probe showed specific hybridization to the euchromatic gap region within the large heterochromatic block of the short arm of the W chromosome. This specific hybridization coupled with the lack of chiasma formation in this region of the ZW bivalent (presumably due to the heterochromatinization of this region) may explain the pattern of sex-specific hybridization reported for the SM alpha family. The rDNA repeat was localized to the secondary constriction of the short arm of chromosome 3. Specifically, the rDNA probe hybridized with the stalk of the secondary constriction and with parts of both side regions, the satellite and the short arm proper.  相似文献   

16.
P Vernole 《BioTechniques》1990,9(2):200-204
A technique of in situ hybridization on metaphases of chromosomes by a digoxigenin-labeled probe is described. This technique was able to detect single DNA sequences of 2 and 7 kilobases. The results obtained were compared with those of a biotin streptavidin alkaline phosphatase-based detection system. The digoxigenin method was at least as efficient and sensitive as the biotin-streptavidin method.  相似文献   

17.
In order to increase the efficiency, accuracy, fidelity and reliability of in situ hybridization to identify the alien chromosomes and chromosome fragments in triticeae, major steps including probe labelling, chromosome denaturation, DNA concentration for blocking and post-hybridization washing in in situ hybridization were optimized. The results are as fel-lows. (1) The cloned repetitive DNA sequence could be biotin labelled more efficiently by nick translation than by random oligonucleotide labelling method: whereas the random oligonucleotide labelling is more suitable for genomic DNA probe and the labelling efficiency could be increased by prolonging the labelling time appropriately. (2) Denaturation of the biotinylated probe and chromosomes together in oven at 75 ℃ showed the satisfactory results of in situ hybridization, but the contour of treated rye chromosomes often became blurred when the temperature of denaturation was higher than 85℃. When 70% formamide (in 2 × SSC) was used to denature the chromosome DNA, rye chromosomes often swelled although the biotinylated signals could be detected. (3) The unlabeled DNA concentrations for blocking were tested in genomic in situ hybridization to detect the Haynaldia villosa chromosomes with biotin labelled H. villosa genomic DNA as probe. The best contrast between H. villosa and wheat chromosomes was obtained without using the blocking DNA (unlabeled wheat genomic DNA). (4) Post-hybridization washes were carried out in 50% formamide (in 2 × SSC) or in 2 × SSC at different temperature. When the post-hybridization washing temperature were increased gradually from room temperature to 42℃ in 50% formamide (in 2 × SSC). specific in situ hybridization signals on chromosome in triticeae were observed using both biotinylated repetitive DNA and genomic DNA as probe. With the improved resolution of this protocol, in situ hybridization would be widely applied to wheat breeding and genetics researches.  相似文献   

18.
Summary The objectives of this study were to determine if biotin-labelled total genomic DNA of rye (Secale cereale L.) could be used to (i) preferentially label rye meiotic chromosomes in triticale and (ii) detect translocation stocks at interphase and/or early prophase by in situ hybridization. Welsh triticale, a wheat-rye segmental amphiploid, and Kavkaz wheat, a wheat-rye translocation were used. The results indicated that labelled chromosomes of rye and unlabelled chromosomes of wheat could be observed throughout all meiotic stages in the triticale. For Kavkaz wheat, the presence of the translocated 1RS chromosome arm of rye was detected at the interphase or very early prophase stage. Rapid assessment of feasibility of gene transfers and detection of alien DNA in somatic cells at the interphase stage by in situ hybridization allows for rapid decision-making and saves time and expense in plant breeding programs.Plant Research Centre Contribution No. 1276  相似文献   

19.
This report describes a fluorescence in situ hybridization approach to chromosome staining that facilitates detection of structural aberrations and allows discrimination between dicentric chromosomes and symmetrically translocated chromosomes. In this approach, selected whole chromosomes are stained in one color by hybridization with composite probes whose elements have DNA sequence homology along the length of the target chromosomes. In addition, all chromosomes are counterstained with a DNA specific dye so that structural aberrations between target and non-target chromosomes are clearly visible. Discrimination between dicentric chromosomes and symmetrical translocations is accomplished by hybridization with a second probe that is homologous to DNA sequences found in the centromeric region of all chromosomes. The centromeric marker is visualized in a different color, so that the number of centromeres per aberrant chromosome can be rapidly determined in the microscope by changing excitation and fluorescence filters.by H.F. Willard  相似文献   

20.
Fluorescence in situ hybridization (FISH) was performed on human interphase sperm nuclei to determine the utility of this technique for aneuploidy detection. Repetitive DNA sequences specific for chromosomes 1, 12 and X were biotinylated and hybridized with mature sperm, which had been treated with cetyltrimethylammonium bromide and dithiothreitol to render them accessible to the probes. Detection of bound probe was accomplished with fluoresceinated avidin and antiavidin. For each of the chromosomes studied, chromosome number was determined by counting the fluorescent signals, representing hybridized regions, within the sperm nuclei. The frequencies for disomy, that is for nuclei containing two signals, for chromosomes 1, 12 and X were 0.06%, 0.04% and 0.03%, respectively. The congruence of these results with those determined by the cross-species hamster oocyte-human sperm assay, and the high efficiency of hybridization indicate that FISH is a sensitive and reliable tool for aneuploidy detection in human sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号