首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An epithelium is important for integrity, homeostasis, communication and co-ordination, and its development must have been a fundamental step in the evolution of modern metazoan body plans. Sponges are metazoans that are often said to lack a true epithelium. We assess the properties of epithelia, and review the history of studies on sponge epithelia, focusing on their homology to bilaterian epithelia, their ultrastructure, and on their ability to seal. Electron micrographs show that adherens-type junctions are present in sponges but they can appear much slighter than equivalent junctions in other metazoans. Fine septae are seen in junctions of all sponge groups, but distinct septate junctions are only known from Calcarea. Similarly, all sponges can have collagenous sheets underlying their epithelia, but only homoscleromorphs are established to have a distinct basal lamina. The presence of most, but not all, gene families known to be involved in epithelial development and function also suggests that sponge epithelia function like, and are homologous to, bilaterian epithelia. However, physiological evidence that sponge epithelia regulate their internal environment is so far lacking. Given that up to six differentiated epithelia can be recognized in sponges, distinct physiological roles are expected. Recognition that sponges have epithelia challenges the perception that sponges are only loose associations of cells, and helps to relate the biology and physiology of the body plan of the adult sponge to the biology of other metazoans.  相似文献   

2.
The tricellular tight junction (tTJ) forms at the convergence of bicellular tight junctions (bTJs) where three epithelial cells meet in polarized epithelia, and it is required for the maintenance of the transepithelial barrier. Tricellulin is a four transmembrane domain protein recently identified as the first marker of tTJ, but little is known about how tricellulin is localized at tTJs. As for the molecular mechanism of association of tricellulin with tight junctions (TJs), we found that tricellulin was incorporated into claudin-based TJs independently of binding to zona occludens-1. Unexpectedly, exogenous expression of tricellulin increased cross-links of TJ strands in the plasma membrane. As for the molecular mechanisms for localization of tricellulin at tricellular junctions, we found that knockdown of occludin caused mislocalization of tricellulin to bTJs, implying that occludin supports tricellular localization of tricellulin by excluding tricellulin from bTJs.  相似文献   

3.
The establishment of tight junctions and cell polarity is an essential process in all epithelia. Endotubin is an integral membrane protein found in apical endosomes of developing epithelia when tight junctions and epithelial polarity first arise. We found that the disruption of endotubin function in cells in culture by siRNA or overexpression of the C‐terminal cytoplasmic domain of endotubin causes defects in organization and function of tight junctions. We observe defects in localization of tight junction proteins, reduced transepithelial resistance, increased lanthanum penetration between cells and reduced ability of cells to form cysts in three‐dimensional culture. In addition, in cells overexpressing the C‐terminal domain of endotubin, we observe a delay in re‐establishing the normal distribution of endosomes after calcium switch. These results suggest that endotubin regulates trafficking of polarity proteins and tight junction components out of the endosomal compartment, thereby providing a critical link between a resident protein of apical endosomes and tight junctions.  相似文献   

4.
Epithelia are highly organized structures adapted to protect the underlying tissues from external aggressions, including microbial infections. Consequently, pathogens have evolved various strategies to target directly or indirectly intercellular junctions and/or components that maintain the structure of epithelia. Interestingly, some extracellular pathogens secrete enzymes that modify the extracellular part of junction components. Others produce toxins that are endocytosed and act from the inside of the cell to disrupt epithelial junctions. Other pathogens may directly inject into cells factors that are targeted to and destabilize the junctions, or that interact with signaling cascades that affect junction stability. Finally invasive bacteria or viruses may, by entering into cells, destabilize the junctions by targeting junction components directly or by inducing a series of events that lead to chemokine secretion, polymorphonuclear recruitment and inflammation.  相似文献   

5.
Under standard culture conditions, epithelial cells grow with their basal surface attached to the culture dish and their apical surface facing the medium. Morphological and functional markers are located in the appropriate plasma membrane, and transepithelial transport occurs in a variety of cultured epithelia. As a result of the polarity of the cells and the presence of tight junctions between cells, on standard tissue culture dishes there is restricted access of growth medium to the basolateral surface of the epithelium, which is the surface at which nutrient exchange normally occurs. Greater differentiation of epithelial cultures can be achieved by growing primary cultures or continuous cell lines on permeable surfaces such as porous bottom cultures dishes in which the porous bottom is formed by a filter or membrane of collagen, or on floating collagen gels. In many cultures, differentiation varies with the time after the culture was seeded. Certain chemicals that accelerate differentiation in nonepithelial cells also accelerate the differentiation of epithelial cultures. Ultimately, defined media and specific substrates for cell attachment should lead to further differentiation of epithelia in culture.  相似文献   

6.
The integrity of cell-cell contacts such as adherens junctions (AJ) and tight junctions (TJ) is essential for the function of epithelia. During carcinogenesis, the increased motility and invasiveness of tumor cells reflect the loss of characteristic epithelial features, including cell adhesion. While beta-catenin, a component of AJ, plays a well characterized dual role in cell adhesion and signal transduction leading to epithelial cell transformation, little is known about possible roles of tight junction components in signaling processes. Here we show that mutants of the TJ protein zonula occludens protein-1 (ZO-1), which encode the PDZ domains (ZO-1 PDZ) but no longer localize at the plasma membrane, induce a dramatic epithelial to mesenchymal transition (EMT) of Madin-Darby canine kidney I (MDCKI) cells. The observed EMT of these MDCK-PDZ cells is characterized by a repression of epithelial marker genes, a restricted differentiation potential and a significantly induced tumorigenicity. Intriguingly, the beta-catenin signaling pathway is activated in the cells expressing the ZO-1 PDZ protein. Ectopic expression of the adenomatous polyposis coli tumor suppressor gene, known to down-regulate activated beta-catenin signaling, reverts the transformed fibroblastoid phenotype of MDCK-PDZ cells. Thus, cytoplasmic localization of the ZO-1 PDZ domains induces an EMT in MDCKI cells, most likely by modulating beta-catenin signaling.  相似文献   

7.
The tight junction, or zonula occludens, forms an intercellular barrier between epithelial cells within the gastrointestinal tract and liver and, by limiting the movement of water and solutes through the intercellular space, maintains the physicochemical separation of tissue compartments. The paracellular barrier properties of junctions are regulated and quite different among epithelia. The junction also forms an intramembrane barrier between the apical and basolateral membrane domains, contributing to segregation of biochemically distinct components of these plasma membrane surfaces. Here we briefly review three rapidly developing areas of medically relevant basic knowledge about the tight junction. First, we describe the presently incomplete knowledge of the molecular structure of the tight junction as a framework for understanding its functional properties. Second, we consider experimental evidence defining how the barrier properties of junctions are physiologically regulated and, third, how barrier properties are specifically altered in, and contribute to, pathologic processes affecting epithelia.  相似文献   

8.
Myelinated nerves are specifically designed to allow the efficient and rapid propagation of action potentials. Myelinating glial cells contain several types of cellular junctions that are found between the myelin lamellas themselves in specialized regions of non-compact myelin and between the myelin membrane and the underlying axon. These include most of the junctional specializations found in epithelial cells, including tight, gap and adherens junctions. However, whereas in epithelial cells these junctions are formed between different cells, in myelinating glia these so called autotypic junctions are found between membrane lamellae of the same cell. In addition, myelinating glial cells form a heterotypic septate-like junction with the axon around the nodes of Ranvier and, in the peripheral nerve system, contact the basal lamina, which surrounds myelinating Schwann cells. This short review discusses the structure, molecular composition and function of the junctions present in myelinating cells, concentrating on the axo-glial junction.  相似文献   

9.
Tight junctions serve as the rate-limiting barrier to passivemovement of hydrophilic solutes across intestinal epithelia. Afteractivation of Na+-glucosecotransport, the permeability of intestinal tight junctions isincreased. Because previous analyses of this physiological tightjunction regulation have been restricted to intact mucosae, dissectionof the mechanisms underlying this process has been limited. Tocharacterize this process, we have developed a reductionist modelconsisting of Caco-2 intestinal epithelial cells transfected with theintestinal Na+-glucosecotransporter, SGLT1. Monolayers of SGLT1 transfectants demonstratephysiological Na+-glucosecotransport. Activation of SGLT1 results in a 22 ± 5% fall intransepithelial resistance (TER) (P < 0.001). Similarly, inactivation of SGLT1 by addition of phloridzinincreases TER by 24 ± 2% (P < 0.001). The increased tight junction permeability is size selective,with increased flux of small nutrient-sized molecules, e.g., mannitol,but not of larger molecules, e.g., inulin. SGLT1-dependent increases intight junction permeability are inhibited by myosin light-chain kinaseinhibitors (20 µM ML-7 or 40 µM ML-9), suggesting that myosinregulatory light-chain (MLC) phosphorylation is involved in tightjunction regulation. Analysis of MLC phosphorylation showed a 2.08-foldincrease after activation of SGLT1 (P < 0.01), which was inhibited by ML-9(P < 0.01). Thus monolayersincubated with glucose and myosin light-chain kinase inhibitors arecomparable to monolayers incubated with phloridzin. ML-9 also inhibitsSGLT1-mediated tight junction regulation in small intestinal mucosa(P < 0.01). These data demonstrate that epithelial cells are the mediators of physiological tight junctionregulation subsequent to SGLT1 activation. The intimate relationshipbetween tight junction regulation and MLC phosphorylation suggests thata critical step in regulation of epithelial tight junction permeabilitymay be myosin ATPase-mediated contraction of the perijunctionalactomyosin ring and subsequent physical tension on the tight junction.

  相似文献   

10.
 The facilitative glucose transporter GLUT1 is abundant in cells of the blood-ocular barrier and serves as a glucose transport mechanism in the barrier. To see the relationship between the glucose transfer function and junctional proteins in the barrier, we examined the localization of GLUT1 and the tight junction proteins, occludin and ZO-1, in the mouse eye. Their localization in the retina, ciliary body, and iris was visualized by double-immunofluorescence microscopy and immunogold electron microscopy. Occludin and ZO-1 were colocalized at tight junctions of the cells of the barrier: retinal pigment epithelial cells, non-pigmented epithelial cells of the ciliary body, and endothelial cells of GLUT1-positive blood vessels. Occludin was restricted to these cells of the barrier. ZO-1 was found, in addition, in sites not functioning as a barrier: the outer limiting membrane in the retina, in the cell border between pigmented and non-pigmented epithelial cells in the ciliary body, and GLUT1-negative blood vessels. These observations show that localization of occludin is restricted to tight junctions of cells of the barrier, whereas ZO-1 is more widely distributed. Accepted: 7 September 1998  相似文献   

11.
SGLT1, an isoform of Na+-dependent glucose transporters, is localized at the apical plasma membrane in the epithelial cells of the small intestine and the kidney. In the present study we examined its location in SGLT1 cDNA-transfected MDCK cells, which form an epithelial sheet connected by tight junctions in culture. Formation of tight junctions was monitored by staining for occludin, an integral tight junction protein. In the cells demarcated by an uninterrupted occludin meshwork, SGLT1 was specifically localized at the apical plasma membrane, showing that SGLT1 has a signal to accomplish this restricted localization. In the cells with little or no occludin accumulation in the tight junction, however, SGLT1 was present along the entire aspect of the plasma membrane. Similar distribution of SGLT1 was observed in the cells as long as the occludin meshwork remained incomplete. These observations sugget that apical localization of SGLT1 occurs upon the completion of the uninterrupted meshwork of tight junctions.  相似文献   

12.
Summary A simple continuous epithelium surrounds the body of the pelagic larvacean. It consists of two zones of cells: oikoplast cells and flattened cells. The oikoplast cells are columnar and produce a thick extracellular house that ensheathes the body of the organism. These cells are joined laterally by wide tight junctions (zonulae occludentes). The tail of the animal is surrounded by exceedingly thin cells which are joined by narrow tight junctions under which lie intermediate junctions (zonulae adhaerentes) and gap junctions. A web of fibrous material inserts into the intermediate junctions. The transitional cells between the two epithelial zones have one lateral border with a wide tight junction, and the other lateral border with a narrow tight junction and a wide intermediate junction. In freeze-fracture replicas, the wide tight junction has a number of anastomosing ridges, in comparison with the narrow tight junction, which usually consists of only a single row of intramembranous particles. In replicas, the thin epithelial cells show unusual parallel arrays of particles in clusters on their apical plasma membranes. This simple epithelium, therefore, exhibits striking differences between the two cellular zones, in the structural characteristics of both the lateral borders and the apical membrane.  相似文献   

13.
Small rab/Ypt1/Sec4 GTPase family have been involved in the regulation of membrane traffic along the biosynthetic and endocytic pathways in eucaryotic cells. Polarized epithelial cells have morphologically and functionally distinct apical and basolateral surfaces separated by tight junctions. The establishment and maintenance of these structures require delivery of membrane proteins and lipids to these domains. In this work, we have isolated a cDNA clone from a human intestinal cDNA library encoding a small GTPase, rab13, closely related to the yeast Sec4 protein. Confocal microscopy analysis on polarized Caco-2 cells shows that rab13 protein colocalized with the tight junction marker ZO- 1. Cryostat sections of tissues confirm that rab13 localized to the junctional complex region of a variety of epithelia, including intestine, kidney, liver, and of endothelial cells. This localization requires assembly and integrity of the tight junctions. Disruption of tight junctions by incubation in low Ca2+ media induces the redistribution of rab13. In cells devoid of tight junctions, rab13 was found associated with vesicles dispersed throughout the cytoplasm. Cell- cell contacts initiated by E-cadherin in transfected L cells do not recruit rab13 to the resulting adherens-like junction complexes. The participation of rab13 in polarized transport, in the assembly and/or the activity of tight junctions is discussed.  相似文献   

14.
《The Journal of cell biology》1990,111(3):1255-1263
The foot processes of glomerular epithelial cells of the mammalian kidney are firmly attached to one another by shallow intercellular junctions or slit diaphragms of unknown composition. We have investigated the molecular nature of these junctions using an antibody that recognizes ZO-1, a protein that is specific for the tight junction or zonula occludens. By immunoblotting the affinity purified anti-ZO-1 IgG recognizes a single 225-kD band in kidney cortex and in slit diaphragm-enriched fractions as in other tissues. When ZO-1 was localized by immunofluorescence in kidney tissue of adult rats, the protein was detected in epithelia of all segments of the nephron, but the glomerular epithelium was much more intensely stained than any other epithelium. Among tubule epithelia the signal for ZO-1 correlated with the known fibril content and physiologic tightness of the junctions, i.e., it was highest in distal and collecting tubules and lowest in the proximal tubule. By immunoelectron microscopy ZO-1 was found to be concentrated on the cytoplasmic surface of the tight junctional membrane. Within the glomerulus ZO-1 was localized predominantly in the epithelial foot processes where it was concentrated precisely at the points of insertion of the slit diaphragms into the lateral cell membrane. Its distribution appeared to be continuous along the continuous slit membrane junction. When ZO-1 was localized in differentiating glomeruli in the newborn rat kidney, it was present early in development when the apical junctional complexes between presumptive podocytes are composed of typical tight and adhering junctions. It remained associated with these junctions during the time they migrate down the lateral cell surface, disappear and are replaced by slit diaphragms. The distribution of ZO-1 and the close developmental relationship between the two junctions suggest that the slit diaphragm is a variant of the tight junction that shares with it at least one structural protein and the functional property of defining distinctive plasmalemmal domains. The glomerular epithelium is unique among renal epithelia in that ZO-1 is present, but the intercellular spaces are wide open and no fibrils are seen by freeze fracture. The presence of ZO-1 along slit membranes indicates that expression of ZO-1 alone does not lead to tight junction assembly.  相似文献   

15.
16.
The amiloride-sensitive Na+ channel constitutes the rate-limiting step for Na+ transport in epithelia. Immunolocalization and electrophysiological studies have demonstrated that this channel is localized at the apical membrane of polarized epithelial cells. This localization is essential for proper channel function in Na+ transporting epithelia. In addition, the channel has been shown to associate with the cytoskeletal proteins ankyrin and alpha-spectrin in renal epithelia. However, the molecular mechanisms underlying the cytoskeletal interactions and apical membrane localization of this channel are largely unknown. In this study we show that the putative pore forming subunit of the rat epithelial (amiloride-sensitive) Na+ channel (alpha ENaC) binds to alpha-spectrin in vivo, as determined by co-immunoprecipitation. This binding is mediated by the SH3 domain of alpha-spectrin which binds to a unique proline-rich sequence within the C-terminal region of alpha rENaC. Accordingly, the C-terminal region is sufficient to mediate binding to intact alpha-spectrin from alveolar epithelial cell lysate. When microinjected into the cytoplasm of polarized primary rat alveolar epithelial cells, a recombinant fusion protein containing the C-terminal proline-rich region of alpha rENaC localized exclusively to the apical area of the plasma membrane, as determined by confocal microscopy. This localization paralleled that of alpha-spectrin. In contrast, microinjected fusion protein containing the N-terminal (control) protein of alpha rENaC remained diffuse within the cytoplasm. These results suggest that an SH3 binding region in alpha rENaC mediates the apical localization of the Na+ channel. Thus, cytoskeletal interactions via SH3 domains may provide a novel mechanism for retaining proteins in specific membranes of polarized epithelial cells.  相似文献   

17.
Endothelial cells separate the intra- and extravascular space and regulate transport processes between these compartments. Since intercellular junctions are required for these specific cell functions, the cell-cell contacts in the permanent cell line ECV304 were systematically analyzed and compared with human umbilical vein endothelial cells (HUVECs) in primary culture and with the epithelial Madin Darby Canine Kidney (MDCK) cell line. Filter-grown ECV304 cells generate a distinct electrical resistance and a permeability barrier between cell culture compartments. Electron microscopy of ECV304 cells revealed lateral membrane interdigitations, typically found in endothelial cells in vivo, with direct membrane contact sites, which prevented the diffusion of lanthanum. By immunoblot and immunofluorescence analysis, the expression and cellular localization of the tight junction and adherens-type junction proteins occludin, ZO-1, symplekin, beta-catenin, and plakoglobin were analyzed. ECV304 cells display further characteristics of endothelial cells, including the expresssion of thrombomodulin and of the vitronectin receptor CD51, as well as the secretion of plasminogen activator inhibitor 1 (PAI-1) and endothelin. However, ECV304 cells also express proteins characteristically found in epithelial cells, including E-cadherin and the desmosomal proteins desmoplakin, desmocollin, and desmoglein; occasionally desmosomal structures can be identified by electron microscopy. In conclusion, ECV304 cells express many endothelial markers and form specialized intercellular junctions that display some epithelial features. Thus this reportedly endothelial-derived permanent human cell line may be dedifferentiated toward an epithelial phenotype.  相似文献   

18.
Direct communication of neighboring cells by gap junction channels is essential for the development of tissues and organs in the body. Whereas vertebrate gap junctions are composed of members of the connexin family of transmembrane proteins, in invertebrates gap junctions consist of Innexin channel proteins. Innexins display very low sequence homology to connexins. In addition, very little is known about their cellular role during developmental processes. In this report, we examined the function and the distribution of Drosophila Innexin 2 protein in embryonic epithelia. Both loss-of-function and gain-of-function innexin 2 mutants display severe developmental defects due to cell death and a failure of proper epithelial morphogenesis. Furthermore, immunohistochemical analyses using antibodies against the Innexins 1 and 2 indicate that the distribution of Innexin gap junction proteins to specific membrane domains is regulated by tissue specific factors. Finally, biochemical interaction studies together with genetic loss- and gain-of-function experiments provide evidence that Innexin 2 interacts with core proteins of adherens and septate junctions. This is the first study, to our knowledge, of cellular distribution and protein-protein interactions of an Innexin gap junctional channel protein in the developing epithelia of Drosophila.  相似文献   

19.
Diarrhoea is a hallmark of infections by the human attaching and effacing (A/E) pathogens, enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). Although the mechanisms underlying diarrhoea induced by these pathogens remain unknown, cell culture results have suggested that these pathogens may target tight junctions. Tight junctions in the colon function as physical intercellular barriers that separate and prevent mixing of the luminal contents with adlumenal regions of the epithelium. Consequently, it is thought that the disruption of intestinal epithelial tight junctions by A/E pathogens could result in a loss of barrier function in the alimentary tract; however, this remains unexamined. Here we demonstrate for the first time that A/E pathogen infection results in the morphological alteration of tight junctions during natural disease. Tight junction alteration, characterized by relocalization of the transmembrane tight junction proteins claudin 1, 3 and 5, is a functional disruption; molecular tracers, which do not normally penetrate uninfected epithelia, pass across pathogen-infected epithelia. Functional junction disruption occurs with a concomitant increase in colon luminal water content. The effects on tissue are dependent upon the bacterial type III effector EspF (E. coli secreted protein F), because bacteria lacking EspF, while able to colonize, are defective for junction disruption and result in decreased proportions of water in the colon compared with wild-type infection. These results suggest that the diarrhoea induced by A/E pathogens occurs as part of functional tight junction disruption.  相似文献   

20.
Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号