首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The taungya agro‐forestry system is an under‐researched means of forest restoration that may result in high tree diversity. Within a forest reserve in Ghana, the forest core and its surrounding Teak‐ and Cedrela‐taungya on logged, cropped and burned land were mapped with ALOS satellite imagery. Native trees, seedlings and saplings were enumerated in 70 random, nested plots, equally divided between forest and taungya. The native tree regeneration was assessed by species richness (SR), Shannon‐Wiener Index (SWI), Shannon Evenness Index (SEI) and species density (SeD) for seedlings, saplings and trees separately and combined and subsequently correlated with canopy covers (CC) in taungya. As anticipated, the taungya diversity was lower than the forest diversity but higher than reported from nontaungya exotic plantations. In the forest, the diversity of native trees increased from seedlings through saplings to trees. The reverse was found in the taungya. Taungya seedling diversity was not significantly different from the forest, while the sapling and tree diversity were significantly lower. Weak correlations of CC with SR, SWI, SEI and SeD were found. Our results suggest the need for treatment to maintain the tree diversity beyond the seedling stage in the taungya.  相似文献   

2.
Overabundant ungulate populations can alter forests. Concurrently, global declines of seed dispersers may threaten native forest structure and function. On an island largely devoid of native vertebrate seed dispersers, we monitored forest succession for 7 years following ungulate exclusion from a 5‐ha area and adjacent plots with ungulates still present. We observed succession from open scrub to forest and understory cover by non‐native plants declined. Two trees, native Hibiscus tiliaceus and non‐native Leucaena leucocephala, accounted for most forest regeneration, with the latter dominant. Neither species is dependent on animal dispersers nor was there strong evidence that plants dependent on dispersers migrated into the 5‐ha study area. Passive restoration following ungulate removal may facilitate restoration, but did not show promise for fully restoring native forest on Guam. Restoration of native forest plants in bird depopulated areas will likely require active outplanting of native seedlings, control of factors resulting in bird loss, and reintroduction of seed dispersers.  相似文献   

3.
Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non‐native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m a.s.l.; precipitation approximately 2770 mm yr?1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum‐dominated herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using non‐parametric H‐tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger‐dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure.  相似文献   

4.
This paper presents a new synthesis of the role of native and non‐native species in diverse pathways and processes that influence forest regeneration on anthropogenic grassland in the moist tropics. Because of altered species composition, abiotic conditions and landscape habitat mosaics, together with human interventions, these successional pathways differ from those seen in pre‐clearing forests. However, representation of different functional life forms of plant (tree, vine, grass, herb and fern) and animal (frugivorous seed disperser, granivorous seed predator, seedling herbivore and carnivore) shows consistent global variation among areas of pasture, intact forest, and post‐grassland regrowth. Biotic webs of interaction involve complex indirect influences and feedbacks, which can account for wide observed variation in regeneration trajectories over time. Important processes include: limitation of tree establishment by dense grasses; recruitment and growth of pioneer pasture trees (shading grasses and facilitating bird‐assisted seed dispersal); and smothering of trees by vines. In these interactions, species’ functional roles are more important than their biogeographic origins. Case studies in eastern Australia show native rain forest plant species diversity in all life forms increasing over time when pioneer trees are non‐native (e.g., Cinnamomum camphora, Solanum mauritianum), concurrent with decreased grass and fern cover and increased abundance of trees and vine tangles. The global literature shows both native and non‐native species facilitating and inhibiting regeneration. However conservation goals are often targeted at removing non‐native species. Achieving large‐scale tropical forest restoration will require increased recognition of their multiple roles, and compromises about allocating resources to their removal.  相似文献   

5.
Given the high rates of deforestation and subsequent land abandonment, there are increasing calls to reforest degraded lands; however, many areas are in a state of arrested succession. Plantations can break arrested succession and the sale of timber can pay for restoration efforts. However, if the harvest damages native regeneration, it may be necessary to intervene with enrichment planting. Unfortunately, it is not clear when intervention is necessary. Here, we document the rate of biomass accumulation of planted seedlings relative to natural regeneration in a harvested plantation in Kibale National Park, Uganda. We established two 2‐ha plots and in one, we planted 100 seedlings of each of four native species, and we monitored all tree regeneration in this area and the control plot. After 4 years, naturally regenerating trees were much taller, larger and more common than the planted seedlings. Species richness and two nonparametric estimators of richness were comparable between the plots. The cumulative biomass of planted seedlings accounted for 0.04% of the total above‐ground tree biomass. The use of plantations facilitated the growth of indigenous trees, and enrichment planting subsequent to harvesting was not necessary to obtain a rich tree community with a large number of new recruits.  相似文献   

6.
The goal of restoration is to accelerate ecosystem recovery, but in ecosystems that naturally regenerate rapidly restoration techniques need to be selected carefully to facilitate rather than impede natural recovery. We compared the effects of five restoration techniques, such as plowing the soil, removing grasses, adding forest litter, seeding, and planting nursery‐growing seedlings, on the regeneration of seasonal deciduous forest trees in four abandoned pastures in central Brazil. We monitored all woody stems immediately prior to treatments and again 14 months after the treatments. We recorded an average of 16,663 tree stems per hectare and a total of 83 species before implementing treatments. Planting strongly increased species richness; adding litter and seeding had weaker positive effects on richness; and plowing and grass removal had no effect. Plowing substantially reduced the density of naturally established stems. Despite the high survival of planted seedlings, stem density in planting treatments did not change because the tractor and digging holes to plant seedlings caused mortality of naturally regenerating seedlings. Tree stems grew more in the grass release plots than in the control plots. Our results suggest that early succession of seasonal deciduous forest in pastures in the region studied does not need to be stimulated once the perturbation is stopped and that intensive restoration efforts may actually slow recovery. We recommend only enrichment planting of seedlings that are not able to resprout.  相似文献   

7.
8.
Efforts to reforest tropical pasture with native tree species have increased in recent years, yet little is known about the physiology of most tropical trees. The goal of this study was to assess the effect of habitat on photosynthetic responses to light for seedlings of four native rainforest species (Calophyllum brasiliense, Ocotea glaucosericea, Ocotea whitei, and Sideroxylon portoricense) planted to facilitate tropical rainforest recovery in southern Costa Rica. Seedlings were planted in primary forest, in open abandoned pasture, and in the shade of remnant trees within the pasture. Growth, morphology, photosynthetic gas exchange responses to light, and chlorophyll fluorescence (an indication of the integrity of photosynthetic processes) were measured in the three habitats. Height and leaf area were generally greater for seedlings in tree shade compared to those in the forest and open pasture. Photosynthetic rates were higher for plants in open pasture and tree shade compared to those in the forest for two of the four species. Chlorophyll fluorescence results indicated flexibility in the photosynthetic processing of light energy that may help plants tolerate the bright light of the pasture. This study demonstrates that, for certain species, seedlings under remnant pasture trees do not exhibit the level of photosynthetic stress experienced in open abandoned pasture. Seedling responses to light, in combination with other factors such as increased nutrient input through litterfall, help explain the enhanced growth of seedlings under remnant pasture trees. Planting seedlings under remnant trees may increase the success of future efforts to restore tropical forest in abandoned agricultural land.  相似文献   

9.
Most Hawaiian forests lack resiliency following disturbance due to the presence of non‐native and invasive plant and animal species. The montane wet forest within Hakalau Forest National Wildlife Refuge on Hawai'i island has a long history of ungulate disturbance but portions of the refuge were fenced and most ungulates excluded by the early 1990s. We examined patterns of regeneration within two 100 ha study sites in this forest following the removal of ungulates and in the absence of invasive woody tree species to determine, in part, if passive restoration techniques can be successful under these conditions. We characterized growth, mortality, and basal area (BA) changes for approximately 7,100 marked individuals of all native tree species present in two surveys over a 17–18‐year period within two hundred 30 m diameter forest plots. Considerable recruitment within plots of new trees of all species significantly changed size class distributions and erased deficits in small‐sized trees observed during the first survey, particularly for the codominant canopy tree, koa (Acacia koa). Overall, growth of established dominant 'ōhi'a trees (Metrosideros polymorpha) and recruitment of mid‐canopy trees contributed to increases in BA while high levels of mortality for large A. koa trees contributed to decreased BA. This resulted in a slight increase in BA between the two surveys (+1.9%). This study demonstrates that fencing and ungulate removal may have rescued the A. koa population by facilitating the first real pulse in recruitment in over a century, and that passive restoration can be a successful management strategy in this forest.  相似文献   

10.
For tropical forest restoration to result in long‐term biodiversity gains, native trees must establish self‐sustaining populations in degraded sites. While many have asked how seedling recruitment varies between restoration treatments, the long‐term fate of these recruits remains unknown. We address this research gap by tracking natural recruits of 27 species during the first 7 years of a tropical forest restoration experiment that included both planted and naturally regenerating plots. We used an individual‐based model to estimate the probability that a seedling achieves reproductive maturity after several years of growth and survival. We found an advantage for recruits in naturally regenerating plots, with up to 40% increased probability of reproduction in this treatment, relative to planted plots. The demographic advantage of natural regeneration was highest for mid‐successional species, with relatively minor differences between treatments for early‐successional species. Our research demonstrates the consequences of restoration decision making across the life cycle of tropical tree species.  相似文献   

11.
The role of exotic tree plantations for biodiversity conservation is contested. Such plantations nevertheless offer various ecosystem service benefits, which include carbon storage and facilitation of indigenous tree species regeneration. To assess forest restoration potential in tropical exotic tree plantations, we assessed native cloud forest tree regeneration in 166 plots in ca. 50‐year‐old plantations of five timber species that are widely used in tropical plantations (Pinus patula, Eucalyptus saligna, Cupressus lusitanica, Grevillea robusta and Acacia mearnsii). Differences in species abundance, diversity and composition were compared among plantations, and between plantations and disturbed and undisturbed indigenous Afromontane cloud forest (southeast Kenya) relicts after controlling for environmental variation between plots (i.e. altitude, distance to indigenous forest, soil depth, slope, aspect) and for environmental and stand structural variation (i.e. dominant tree height and basal area). Regenerating trees were mostly early‐successional species. Indigenous tree species regeneration was significantly higher in Grevillea plantations, where the seedling community also included late‐successional tree species. Regeneration under Eucalyptus was particularly poor. Acacia had a strong invasive nature, reducing its potential role and usefulness in indigenous forest restoration. Our study underlined that exotic tree plantations have differential effects on native tree species regeneration, with high potential for Grevillea plantations and low potential for invasive exotic species.  相似文献   

12.
Plantations are frequently established on abandoned pasture lands to speed forest recovery. This strategy requires matching a tree species mix with the prevailing microenvironmental conditions. In four degraded pastures of the Mexican Lacandon rainforest, we planted 2,400 trees of 6 species (Guazuma ulmifolia, Inga vera, Ochroma pyramidale, Trichospermum mexicanum, Bursera simaruba, and Spondias mombin) to (1) test survival, initial growth, and establishment costs; (2) evaluate whether vegetative cuttings outperform direct seeding or transplants of nursery‐raised seedlings; (3) determine tree response to herbaceous dominance and soil compaction; and (4) scrutinize the results' consistency across sites and sampling scales of tree–microenvironment interactions (individual tree vs. averaged plot responses). After 2 years, overall survival and growth rates were high for 2 of 3 nursery‐raised species. Contrary to expectations, all seedlings outperformed the cuttings while direct seeding resulted in a cost‐effective option of intermediate efficacy. The impact of soil resistance to root penetration on tree biomass accumulation was species dependent while bulk density was not relevant. Soil‐covering, herbaceous vegetation accelerated growth in 3 of 4 tested species during the dry season. At this initial stage of forest restoration in abandoned pastures, Guazuma and Trichospermum were the most restoration‐effective species. Costs can be reduced by using direct‐seeding Inga and avoiding weeding during the dry season. Finally, our results demonstrate how species selection trials can be misleading due to site variations in tree response and to sampling scales that fail to account for small‐scale environmental heterogeneity. We recommend ways to improve the design of restoration trials.  相似文献   

13.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

14.

Aim

Ecological restoration is critical for recovering biodiversity and ecosystem services, yet designing interventions to achieve particular outcomes remains fraught with challenges. In the extensive regions where non‐native species are firmly established, it is unlikely that historical conditions can be fully reinstated. To what degree, and how rapidly, can human‐dominated areas be shifted via restoration into regimes that benefit target species, communities or processes?

Location

We explore this question in a >20‐year‐old reforestation effort underway at Hakalau Forest National Wildlife Refuge in montane Hawaii. This large‐scale planting of Acacia koa trees is designed to secure populations of globally threatened bird species by transitioning the site rapidly from pasture to native forest.

Methods

We surveyed all forest birds in multiple corridors of young planted trees, remnant corridors of mature trees along gulches and at sites within mature forest. Using a Bayesian hierarchical approach, we identified which factors (distance from forest, habitat type and surrounding tree cover) had the most important influence on native and exotic bird abundance in the reforestation area.

Results

We found that 90% of native and exotic bird species responded quickly, occupying corridors of native trees approximately a decade after planting. However, native and exotic forest birds responded to markedly different characteristics of the reforested area. Native bird abundance was strongly predicted by proximity to mature forest and remnant corridors; conversely, exotic bird abundance was best predicted by overall tree cover throughout the area reforested.

Main conclusions

Our results demonstrate that large‐scale tree planting in corridors adjacent to mature forest can catalyse rapid recovery (both increased abundance and expanded distribution) of forest birds and that it is possible to design reforestation to benefit native species in novel ecosystems.
  相似文献   

15.
The aim of our study was to compare the shrew community diversity and structure in gradients of tropical forest degradation and restoration. Four plots within each of six habitats of the Ziama Biosphere Reserve were surveyed, including primary forest, secondary forest, cultivated fields, recently (less than 3 years) abandoned fields, young (10–12 years) forest restoration plots, and old (34 years) restoration plots. From August to November 2003, we pitfall-trapped 2,509 shrews representing 11 species. Shrew species richness and composition was similar in the six habitat surveyed, while shrew species abundance varied between habitats. Canopy height and cover, density of stems and trees and understorey density were shown to constitute important parameters influencing the abundance of several shrew species. After clear-cutting, restoration of key attributes of the forest vegetation structure was possible in 10–34 years, either by natural regeneration or by planting of seedlings. The relative abundance of most shrew species was similar between restoring forest (i.e., young restoration plots or fallows) and primary forest. Considering the advantages and disadvantages of these two methods of forest restoration, one of the most suitable management practices to restore forest while preserving shrew biodiversity could be to perform an alternation of native seedling plantation lines and fallows.  相似文献   

16.
Thirty years after selective timber harvest in the Kibale National Park, Uganda, many abandoned logging gaps are dominated by Acanthus pubescens, and show little forest recovery. To examine if this arrested successional state was caused by limited tree seedling growth and survival, we planted seedlings of four forest tree species (Albizia grandibracteata, Mimusops bagshawei, Prunus africana and Uvariopsis congensis) in A. pubescens‐dominated logging gaps and in control areas of adjacent forest. To assess if clearing A. pubescens facilitates forest regeneration, we planted seedlings of two species (A. grandibracteata and U. congensis) in small clearings cut within the logging gaps. We examined mortality, growth, herbivory and site characteristics among the treatments. Finally, we described the physical attributes of the A. pubescens‐dominated gaps. Seedlings of all the four species survived and grew equally well in A. pubescens and forest treatments, and most site characteristics were also similar. Seedlings planted in clearings grew more than in either forest or A. pubescens sites. Very few established trees were found in A. pubescens sites, and most of these were near the forest edges. We also discussed the role of elephants (Loxodonta africana) and collapsing A. pubescens canopies in the maintenance of an arrested successional state in these logging gaps.  相似文献   

17.
Facilitation is an important ecological mechanism with potential applications to forest restoration. We hypothesized that different facilitation treatments, distance from the forest edge and time since initiation of the experiment would affect forest restoration on abandoned pastures. Seed and seedling abundance, species richness and composition were recorded monthly during two years under isolated trees, bird perches and in open pasture. Seed arrival and seedling establishment were measured at 10 m and 300 m from the forest edge. We sampled a total of 131,826 seeds from 115 species and 487 seedlings from 46 species. Isolated trees and bird perches increased re-establishment of forest species; however, species richness was higher under isolated trees. Overall, abundance and richness of seeds and seedlings differed between sampling years, but was unaffected by distance from the forest edge. On the other hand, species composition of seeds and seedlings differed among facilitation treatments, distance from the forest edge and between years. Seedling establishment success rate was larger in large-seeded species than medium- and small-seeded species. Our results suggest that isolated trees enhance forest re-establishment, while bird perches provide a complementary effort to restore tree abundance in abandoned pastures. However, the importance of seed arrival facilitation shifts toward establishment facilitation over time. Arriving species may vary depending on the distance from the forest edge and disperser attractors. Efforts to restore tropical forests on abandoned pastures should take into account a combination of both restoration strategies, effects of time and proximity to forest edge to maximize regeneration.  相似文献   

18.
Restoring Caribbean Dry Forests: Evaluation of Tree Propagation Techniques   总被引:4,自引:0,他引:4  
Survival and height growth of tree seedlings and rooted cuttings introduced into artificially shaded and unshaded plots in a degraded dry forest were measured at intervals for nine months. Ten tree species were selected to represent a range of ecological characteristics of the dry–forest plant community on St. John, U.S. Virgin Islands. Of three propagule types – seeds, seedlings, and rooted cuttings – introduced to field plots, seedlings survived best (52%) over the initial nine-month period. Cuttings of six species rooted successfully in a shadehouse, but only two of these species survived the nine–month field experiment. Seed germination was low, under 11% for eight of ten species tested, and four species did not germinate. Subsequent mortality of seedling recruits was moderately high. Plumeria alba was the only species for which seedling height growth was not significantly greater than cutting height growth. Shading treatment (25% of full sun) significantly increased seedling survivorship (p= 0.03) but suppressed growth slightly for some species. Shading enhanced survival of seedlings produced from broadcast seeds, but not seed germination. Mortality occurred during dry periods, apparently from drought stress. Results suggest (1) that seedling introductions are the preferred propagule type (over seeding or rooted cuttings) for ecological restoration of degraded tropical dry forests, and (2) that some level of shading is required to increase the survivorship of many dry-forest species or to avert complete mortality of some species. This study suggests that early secondary dry forest may be best restored by underplanting within the existing vegetation. Sufficient shading suitable for growth of native dry-forest trees may be attained using a nurse crop of fast-growing leguminous trees.  相似文献   

19.
High‐diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well‐established tree nursery in southeastern Brazil, namely (1) in‐house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high‐diversity reforestation as part of tropical forest restoration. In addition, community‐based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.  相似文献   

20.
The quantitative role of the canopy size of nurse shrubs on microenvironment and native tree establishment in degraded tropical lands has been seldom studied. In a 21‐month field experiment, we aimed to test the effect of a native shrub with different canopy sizes on the early establishment of native trees as part of the effort of forest restoration in tropical China. We examined the microenvironment, and the seedling establishment and growth of two native trees: Castanopsis fissa and Syzygium hancei in both open space (OS) microsite and microsite under the canopy of the native pioneer shrub Rhodomyrtus tomentosa. Shrub microsite was further divided into large canopy (LC), and medium canopy (MC) microsite, based on the shrub leaf area indices. Results showed that relative to OS, LC had higher soil nutrient concentration and water content, and lower photosynthetic active radiation (PAR), while MC had lower PAR and higher soil exchangeable Mg, K, and Ca. Survival and growth were mostly enhanced, while water stress and photoinhibition reduced for C. fissa seedlings in MC and S. hancei seedlings in LC. It is found that the beneficial effects of the native shrub on seedling establishment and growth result mostly from the improvement in nutrient and water availabilities, the reduction in plant stress caused by harsh summer light, and the specific ecological requirements of different tree species. We suggest that different canopy sizes of native shrub R. tomentosa may be explored to target different native trees and hence promote forest restoration in degraded tropical ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号