首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many noncommunicable diseases are linked to degraded diversity in the human and environmental microbiota and are rising globally in epidemic proportions in industrialized urban populations. Reducing this disease burden may be aided by the ecological restoration of microbiota and their habitat in urban green spaces—a process termed microbiome rewilding. Microbiome rewilding could serve as a mechanism to increase urban exposure to biodiversity; biodiversity could introduce microbiota species or functional diversity to improve immune training and regulation in urban populations. As a first step in examining this hypothesis, we explored the microbial diversity and composition of a variety of urban green space vegetation types relative to urban revegetated woodlands of varying levels of vegetation diversity, including lawns, vacant lots, parklands, and remnant woodlands. We generated amplicon sequence variant community profiles from bacterial and archaeal 16S rRNA, fungal ITS1 region, and eukaryotic 18S rRNA marker genes. We also made trophic‐mode predictions of the fungal amplicon sequence variants. Across sites, soil microbiotas in revegetated urban green spaces were similar to remnant woodland microbiotas and differed greatly from lawns and vacant lots. There were several differentially abundant genera likely driving these differences that had strong correlations to plant species richness, soil pH, and conductivity. We provide the first evidence, as far as we know, that revegetation can improve urban soil microbiota diversity toward a more natural, biodiverse state by creating more wild habitat conditions. This evidence supports initiating further studies within the growing field of microbiome rewilding.  相似文献   

2.
Large‐scale restoration efforts are underway globally to mitigate the impact of decades of land degradation by returning functional and biodiverse ecosystems. Revegetation is a heavily relied upon restoration intervention, and one that is expected to result in associated biodiversity returns. However, the outcome of such restoration interventions rarely considers recovery to the soil microbiome, a mega‐diverse and functionally important ecosystem component. Here we examine the archaeal component of the soil microbiome and track community change after a decade of eucalypt woodland restoration in southern Australia. We employed DNA metabarcoding to show that archaeal community composition, richness, and diversity shifted significantly, and towards a restored state 10 years after the restoration intervention. Changes in soil pH and nitrate associated with changes to the archaeal community, potentially relating to the pH responsive properties and close relationship with the nitrogen cycle of some archaea. Our study helps shed light on archaeal community dynamics, as no other study has used DNA metabarcoding to study archaeal responses across a restoration chronosequence. Our results provide great promise for the development of molecular monitoring of the soil microbiome as a future restoration monitoring tool.  相似文献   

3.
人体微生物组计划开展近10年来,大量的研究显示人体微生物通过各种方式深刻地影响着人体健康。人体肠道内丰富多样的病毒构成了肠道病毒组,是人体微生物组的重要组成部分,和人体健康密切相关。本文综述了近些年国际上人体肠道病毒组研究的最新进展,分别从人体肠道病毒组的组成特征、肠道病毒组-细菌组-人体间的相互作用及其对人体健康的影响、病毒组研究的技术策略及挑战等方面进行了论述,探讨了肠道病毒组在人体疾病预防和治疗领域应用的可行性。  相似文献   

4.
Microbiomes play a critical role in promoting a range of host functions. Microbiome function, in turn, is dependent on its community composition. Yet, how microbiome taxa are assembled from their regional species pool remains unclear. Many possible drivers have been hypothesized, including deterministic processes of competition, stochastic processes of colonization and migration, and physiological ‘host‐effect’ habitat filters. The contribution of each to assembly in nascent or perturbed microbiomes is important for understanding host–microbe interactions and host health. In this study, we characterized the bacterial communities in a euryhaline fish and the surrounding tank water during salinity acclimation. To assess the relative influence of stochastic versus deterministic processes in fish microbiome assembly, we manipulated the bacterial species pool around each fish by changing the salinity of aquarium water. Our results show a complete and repeatable turnover of dominant bacterial taxa in the microbiomes from individuals of the same species after acclimation to the same salinity. We show that changes in fish microbiomes are not correlated with corresponding changes to abundant taxa in tank water communities and that the dominant taxa in fish microbiomes are rare in the aquatic surroundings, and vice versa. Our results suggest that bacterial taxa best able to compete within the unique host environment at a given salinity appropriate the most niche space, independent of their relative abundance in tank water communities. In this experiment, deterministic processes appear to drive fish microbiome assembly, with little evidence for stochastic colonization.  相似文献   

5.
Milk is inhabited by a community of bacteria and is one of the first postnatal sources of microbial exposure for mammalian young. Bacteria in breast milk may enhance immune development, improve intestinal health, and stimulate the gut‐brain axis for infants. Variation in milk microbiome structure (e.g., operational taxonomic unit [OTU] diversity, community composition) may lead to different infant developmental outcomes. Milk microbiome structure may depend on evolutionary processes acting at the host species level and ecological processes occurring over lactation time, among others. We quantified milk microbiomes using 16S rRNA high‐throughput sequencing for nine primate species and for six primate mothers sampled over lactation. Our data set included humans (Homo sapiens, Philippines and USA) and eight nonhuman primate species living in captivity (bonobo [Pan paniscus], chimpanzee [Pan troglodytes], western lowland gorilla [Gorilla gorilla gorilla], Bornean orangutan [Pongo pygmaeus], Sumatran orangutan [Pongo abelii], rhesus macaque [Macaca mulatta], owl monkey [Aotus nancymaae]) and in the wild (mantled howler monkey [Alouatta palliata]). For a subset of the data, we paired microbiome data with nutrient and hormone assay results to quantify the effect of milk chemistry on milk microbiomes. We detected a core primate milk microbiome of seven bacterial OTUs indicating a robust relationship between these bacteria and primate species. Milk microbiomes differed among primate species with rhesus macaques, humans and mantled howler monkeys having notably distinct milk microbiomes. Gross energy in milk from protein and fat explained some of the variations in microbiome composition among species. Microbiome composition changed in a predictable manner for three primate mothers over lactation time, suggesting that different bacterial communities may be selected for as the infant ages. Our results contribute to understanding ecological and evolutionary relationships between bacteria and primate hosts, which can have applied benefits for humans and endangered primates in our care.  相似文献   

6.
Which processes drive the productivity benefits of biodiversity remain a critical, but unanswered question in ecology. We tested whether the soil microbiome mediates the diversity‐productivity relationships among late successional plant species. We found that productivity increased with plant richness in diverse soil communities, but not with low‐diversity mixtures of arbuscular mycorrhizal fungi or in pasteurised soils. Diversity‐interaction modelling revealed that pairwise interactions among species best explained the positive diversity‐productivity relationships, and that transgressive overyielding resulting from positive complementarity was only observed with the late successional soil microbiome, which was both the most diverse and exhibited the strongest community differentiation among plant species. We found evidence that both dilution/suppression from host‐specific pathogens and microbiome‐mediated resource partitioning contributed to positive diversity‐productivity relationships and overyielding. Our results suggest that re‐establishment of a diverse, late successional soil microbiome may be critical to the restoration of the functional benefits of plant diversity following anthropogenic disturbance.  相似文献   

7.
人体微生物组计划又称第二人类基因组计划。由美国国立卫生研究院立项资助,2007年正式启动。计划用5年时间耗资1.5亿美元完成900个人体微生物基因组测序。其目标是探索研究人类微生物组的可行性;研究人体微生物组变化与疾病健康的关系;同时为其它科学研究提供信息和技术支持。  相似文献   

8.
The results generated from the NIH funded Human Microbiome Project (HMP) are necessarily tied to the overall mission of the agency, which is to foster scientific discoveries as a basis for protecting and improving health. The investment in the HMP phase 1 accomplished many of its goals including the preliminary characterization of the human microbiome and the identification of links between microbiome diversity and disease states. Going forward, the next step in these studies must involve the identification of the functional molecular elements that mediate the positive influence of a eubiotic microbiome on health and disease. This review will focus on recent advances describing mechanistic events in the intestine elicited by the microbiome. These include symbiotic bacteria-induced activation of redox-dependent cell signaling, the bacterial production of short chain fatty acids and ensuing cellular responses, and the secretion of bacteriocins by bacteria that have anti-microbial activities against potential pathogens.  相似文献   

9.
Microbial communities associated with the gut and the skin are strongly influenced by environmental factors, and can rapidly adapt to change. Historical processes may also affect the microbiome. In particular, variation in microbial colonisation in early life has the potential to induce lasting effects on microbial assemblages. However, little is known about the relative extent of microbiome plasticity or the importance of historical colonisation effects following environmental change, especially for nonmammalian species. To investigate this we performed a reciprocal translocation of Atlantic salmon between artificial and semi‐natural conditions. Wild and hatchery‐reared fry were transferred to three common garden experimental environments for 6 weeks: standard hatchery conditions, hatchery conditions with an enriched diet, and simulated wild conditions. We characterized the faecal and skin microbiome of individual fish before and after the environmental translocation, using a BACI (before‐after‐control‐impact) design. We found evidence of extensive microbiome plasticity for both the gut and skin, with the greatest changes in alpha and beta diversity associated with the largest changes in environment and diet. Microbiome richness and diversity were entirely determined by environment, with no detectable effects of fish origin, and there was also a near‐complete turnover in microbiome structure. However, we also identified, for the first time in fish, evidence of historical colonisation effects reflecting early‐life experience, including ASVs characteristic of captive rearing. These results have important implications for host adaptation to local selective pressures, and highlight how conditions experienced during early life can have a long‐term influence on the microbiome and, potentially, host health.  相似文献   

10.
Microbiome engineering is increasingly being employed as a solution to challenges in health, agriculture, and climate. Often manipulation involves inoculation of new microbes designed to improve function into a preexisting microbial community. Despite, increased efforts in microbiome engineering inoculants frequently fail to establish and/or confer long-lasting modifications on ecosystem function. We posit that one underlying cause of these shortfalls is the failure to consider barriers to organism establishment. This is a key challenge and focus of macroecology research, specifically invasion biology and restoration ecology. We adopt a framework from invasion biology that summarizes establishment barriers in three categories: (1) propagule pressure, (2) environmental filtering, and (3) biotic interactions factors. We suggest that biotic interactions is the most neglected factor in microbiome engineering research, and we recommend a number of actions to accelerate engineering solutions.Subject terms: Community ecology, Microbial ecology

Microbiome engineering is a rapidly evolving frontier for solutions to improve human health, agricultural productivity, and climate management. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Two major challenges for successful microbiome engineering are (1) the design of a microbiome with improved function and (2) the establishment of an improved microbiome in a recipient system of interest. While multiple articles and reviews have addressed functional design [13], microbiome establishment has received less attention. Here, we propose a strategy to improve microbiome engineering by focusing on microbial establishment and leveraging insights from macrobial ecology.Two general engineering strategies are to manipulate indigenous microbes [4] or to introduce new members [5]. The latter involves the design and delivery of inoculants (a.k.a., probiotics in medical and agricultural arenas) and is a rapidly growing biotechnology sector. In their most general form, both strategies have been practiced crudely for thousands of years in human health [6] and agriculture [7]. However, despite current technical advances, inoculants frequently still fail to establish or confer long-lasting (months to years) modifications to ecosystem function [8]. We argue that this repeated failure is in part driven by lack of emphasis on establishment of inoculants.The problem of organism establishment in recipient ecosystems is not unique to microbiome engineering; it has roots in macrobiology, particularly invasion biology and restoration ecology. We propose that adopting a cross-disciplinary conceptual framework to identify barriers to organism establishment, and then prioritizing these barriers through targeted research will accelerate successful microbiome engineering. In addition, recognizing differences in terminology and experimental design within and across disciplines will facilitate research integration across diverse ecosystems and scales. The components of a more holistic strategy are discussed below.  相似文献   

11.
BackgroundThe composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale.ResultsHere, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes.ConclusionsOur results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0759-1) contains supplementary material, which is available to authorized users.  相似文献   

12.
Microbial communities drive soil ecosystem function but are also susceptible to environmental disturbances. We investigated whether exposure to manure sourced from cattle either administered or not administered antibiotics affected microbially mediated terrestrial ecosystem function. We quantified changes in microbial community composition via amplicon sequencing, and terrestrial elemental cycling via a stable isotope pulse‐chase. Exposure to manure from antibiotic‐treated cattle caused: (i) changes in microbial community structure; and (ii) alterations in elemental cycling throughout the terrestrial system. This exposure caused changes in fungal : bacterial ratios, as well as changes in bacterial community structure. Additionally, exposure to manure from cattle treated with pirlimycin resulted in an approximate two‐fold increase in ecosystem respiration of recently fixed‐carbon, and a greater proportion of recently added nitrogen in plant and soil pools compared to the control manure. Manure from antibiotic‐treated cattle therefore affects terrestrial ecosystem function via the soil microbiome, causing decreased ecosystem carbon use efficiency, and altered nitrogen cycling.  相似文献   

13.
This editorial on safety evaluation and risk assessment for the human superorganism introduces a series of papers arguing for a fundamental shift in how we approach human health risk assessment. In this series emphasis is placed on the risk of infectious disease. Our 21stst century understanding of human biology is that, as holobionts, we possess a majority of microbial cells and genes. In fact, our microbes fundamentally affect our interactions with the external environment, metabolism, physiology, and risk of both pathology and disease. As holobionts, we require our microbial partners for us to be both complete and healthy. Using the 20th century understanding of human biology, we failed to capture the effects of the microbiome in evaluating health risks. But 21st century risk assessments such as those associated with exposure to specific microbial pathogens need to include the human microbiome. Microbiome status will be central in determining the health risks for both individuals and populations.  相似文献   

14.
Plants grown in distinct soils typically harbor distinct microbial communities, but the degree of the soil microbiome influence on plant microbiome assembly remains largely undetermined. We also know that the microbes associated with seeds can contribute to the plant microbiome, but the magnitude of this contribution is likely variable. We quantified the influence of soil and seed microbiomes on the bacterial community composition of seedlings by independently inoculating seeds from a single cultivar of wheat (Triticum aestivum) with 219 unique soil slurries while holding other environmental factors constant, determining the composition of the seed, soil, and seedling bacterial communities via cultivation-independent methods. Soil bacterial communities exert a strong, but variable, influence on seedling bacterial community structure, with the extent of the soil bacterial contribution dependent on the soil in question. By testing a wide range of soils, we were able to show that the specific composition of the seedling microbiome is predictable from knowing which bacterial taxa are found in soil. Although the most ubiquitous taxa associated with the seedlings were seed derived, the contributions of the seed microbiome to the seedling microbiome were variable and dependent on soil bacterial community composition. Together this work improves our predictive understanding of how the plant microbiome assembles and how the seedling microbiome could be directly or indirectly manipulated to improve plant health.Subject terms: Microbial ecology, Next-generation sequencing, Microbial ecology  相似文献   

15.
俞佳俐  严力蛟  邓金阳  李健 《生态学报》2020,40(10):3338-3350
城市绿地是人工与自然耦合的城市景观之一,是改善居民居住环境重要组成部分,更是提高居民身心健康的有效途径。以杭州主城区为研究对象,通过GIS技术对城市绿地遥感图像进行解译得到杭州主城区绿地空间布局图,同时,以人口密度为阻力要素,基于交通路网的500m网络距离可达范围内绿地数量和面积作为分类标准。通过对45个高、中、低不同档次的居民区进行问卷调查得到665份居民感知数据并进行统计整理。利用结构方程模型进行以绿地数量及游玩时间为标准的组间分析,区别不同组别的差异及其原因,分析城市绿地数量、面积,居民认知、动机,绿地吸引力等与居民身心健康福祉及满意度之间的关系。结果显示:城市绿地数量、居民游玩绿地次数时间等与居民福祉有显著的正向关系;居民对绿地作用的认知、去往绿地的动机进一步影响居民身心健康福祉;城市绿地的自身引力会激发居民去往绿地的积极性,从而增加去往绿地频次。另外,不同社会属性的个体对绿地需求不同,所产生的福祉效应及满意度也会有所差异。从增加居民区周围的街头绿地及邻里公园数量、提升绿地吸引力、提升居民对城市绿地作用的认知3个方面对城市绿地今后的发展规划提出建议。  相似文献   

16.
Metacommunity theory proposes that a collection of local communities are linked by dispersal and the resulting compositions are a product of both niche‐based (species sorting) and spatial processes. Determining which of these factors is most important in different habitats can provide insight into the regulation of community assembly. To date, the metacommunity organization of heterotrophic soil bacteria is largely unknown. Spatial variation of soil bacterial communities could arise from (1) the resource heterogeneity produced by plant communities through root exudation and/or litter inputs; (2) the heterogeneity of soil environmental properties; and (3) pure spatial processes, including dispersal limitation and stochastic assembly. Understanding the relative importance of these factors for soil bacterial community structure and function could increase our ability to restore soil communities. We utilized an ongoing tallgrass prairie restoration experiment in northeastern Kansas to assess if restoring native plant communities produced changes in bacterial communities 6 years after restoration. We further examined the relative importance of the spatial heterogeneity of plant communities, soil properties, and pure spatial effects for bacterial community structure in the old‐field restoration site. We found that soil bacterial communities were not influenced by plant restoration, but rather, by the local heterogeneity of soil environmental properties (16.9% of bacterial community variation) and pure spatial effects (11.1%). This work also stresses the idea that restoring bacterial communities can take many years to accomplish due to the inherent changes that occur to the soil after cultivation and the time it takes for the re‐establishment of soil quality.  相似文献   

17.
Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free‐ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free‐ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease‐associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management.  相似文献   

18.
Interest in land application of organic amendments—such as biosolids, composts, and manures—is growing due to their potential to increase soil carbon and help mitigate climate change, as well as to support soil health and regenerative agriculture. While organic amendments are predominantly applied to croplands, their application is increasingly proposed on relatively arid rangelands that do not typically receive fertilizers or other inputs, creating unique concerns for outcomes such as native plant diversity and water quality. To maximize environmental benefits and minimize potential harms, we must understand how soil, water, and plant communities respond to particular amendments and site conditions. We conducted a global meta‐analysis of 92 studies in which organic amendments had been added to arid, semiarid, or Mediterranean rangelands. We found that organic amendments, on average, provide some environmental benefits (increased soil carbon, soil water holding capacity, aboveground net primary productivity, and plant tissue nitrogen; decreased runoff quantity), as well as some environmental harms (increased concentrations of soil lead, runoff nitrate, and runoff phosphorus; increased soil CO2 emissions). Published data were inadequate to fully assess impacts to native plant communities. In our models, adding higher amounts of amendment benefitted four outcomes and harmed two outcomes, whereas adding amendments with higher nitrogen concentrations benefitted two outcomes and harmed four outcomes. This suggests that trade‐offs among outcomes are inevitable; however, applying low‐N amendments was consistent with both maximizing benefits and minimizing harms. Short study time frames (median 1–2 years), limited geographic scope, and, for some outcomes, few published studies limit longer‐term inferences from these models. Nevertheless, they provide a starting point to develop site‐specific amendment application strategies aimed toward realizing the potential of this practice to contribute to climate change mitigation while minimizing negative impacts on other environmental goals.  相似文献   

19.
The microbiome can significantly impact host phenotypes and serve as an additional source of heritable genetic variation. While patterns across eukaryotes are consistent with a role for symbiotic microbes in host macroevolution, few studies have examined symbiont‐driven host evolution or the ecological implications of a dynamic microbiome across temporal, spatial or ecological scales. The pea aphid, Acyrthosiphon pisum, and its eight heritable bacterial endosymbionts have served as a model for studies on symbiosis and its potential contributions to host ecology and evolution. But we know little about the natural dynamics or ecological impacts of the heritable microbiome of this cosmopolitan insect pest. Here we report seasonal shifts in the frequencies of heritable defensive bacteria from natural pea aphid populations across two host races and geographic regions. Microbiome dynamics were consistent with symbiont responses to host‐level selection and findings from one population suggested symbiont‐driven adaptation to seasonally changing parasitoid pressures. Conversely, symbiont levels were negatively correlated with enemy‐driven mortality when measured across host races, suggesting important ecological impacts of host race microbiome divergence. Rapid drops in symbiont frequencies following seasonal peaks suggest microbiome instability in several populations, with potentially large costs of ‘superinfection’ under certain environmental conditions. In summary, the realization of several laboratory‐derived, a priori expectations suggests important natural impacts of defensive symbionts in host‐enemy eco‐evolutionary feedbacks. Yet negative findings and unanticipated correlations suggest complexities within this system may limit or obscure symbiont‐driven contemporary evolution, a finding of broad significance given the widespread nature of defensive microbes across plants and animals.  相似文献   

20.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号