首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive species are a common problem in restoration projects. Manipulating soil fertility and species arrival order has the potential to lower their abundance and achieve higher abundances of seeded native species. In a 7‐year experiment in Missouri, United States, we tested how nutrient addition and the timing of arrival of the invasive legume Lespedeza cuneata and seeded native prairie grass and forb species influenced overall community composition. Treatments that involved early arrival of seeded forb and grass species and late arrival of L. cuneata were most successful at creating community structure that fulfilled our restoration goals, displaying high abundance of seeded native forb species, low abundances of L. cuneata, and non‐native species. There were few treatment interactions, with the exception that timing seeded native forbs and timing of L. cuneata arrival interactively influenced the abundance of seeded native forbs. This suggests that the individual treatments are supporting the restoration goals, such as creating a community with low abundance of L. cuneate or high abundance of native seeded species, without restricting each other. This study demonstrates the importance of priority effects in disturbed habitats prone to invasion, the lasting effects of initial seeding on long‐term community composition, and the potential for fertilization to positively benefit restoration of degraded grasslands.  相似文献   

2.
Shrub steppe communities with depleted perennial herbaceous understories often need to be restored to increase resilience and resistance. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) steppe plant communities to reduce sagebrush dominance and restore native herbaceous vegetation, but success has been limited and hampered by increases in exotic annuals. Seeding native bunchgrasses after mowing may accelerate recovery and limit exotics. We compared mowing followed by drill‐seeding native bunchgrasses to mowing and an untreated control at five sites in southeastern Oregon over a 4‐year period. Mowing and seeding bunchgrasses increased bunchgrass density; however, bunchgrass cover did not differ among treatments. Exotic annuals increased with mowing whether or not post‐mowing seeding occurred. Mowing, whether or not seeding occurred, also reduced biological soil crusts. Longer term evaluation is needed to determine if seeded bunchgrasses will increase enough to suppress exotic annuals. Seeded bunchgrasses may have been limited by increases in exotic annuals. Though restoration of sagebrush communities with degraded understories is needed, we do not recommend mowing and seeding native bunchgrasses because this treatment produced mixed results that may lower the resilience and resistance of these communities. Before this method is applied, research is needed to increase our understanding of how to improve establishment of seeded native bunchgrasses. Alternatively, restoration practitioners may need to apply treatments to control exotic annuals and repeatedly seed native bunchgrasses.  相似文献   

3.
Overabundance of woody plants in semiarid ecosystems can degrade understory herbaceous vegetation and often requires shrub reduction and seeding to recover ecosystem services. We used meta‐analysis techniques to assess the effects of fire and mechanical shrub reduction over two post‐treatment timeframes (1–4 and 5–10 years) on changes in cover and frequency of 15 seeded species at 63 restoration sites with high potential for recovery. Compared to mechanical treatments, fire resulted in greater increases in seeded species. Native shrubs did not increase, and forbs generally declined over time; however, large increases in perennial grasses were observed, suggesting that seeding efforts contributed to enhanced understory herbaceous conditions. We found greater increases in a few non‐native species than native species across all treatments, suggesting the possibility that interference among seeded species may have influenced results of this regional assessment. Differences among treatments and species were likely driven by seedbed conditions, which should be carefully considered in restoration planning. Site characteristics also dictated seeded species responses: while forbs showed greater increases in cover over the long term at higher elevation sites considered to be more resilient to disturbance, surprisingly, shrubs and grasses had greater increases in cover and frequency at lower elevation sites where resilience is typically much lower. Further research is needed to understand the causes of forb mortality over time, and to decipher how greater increases of non‐native relative to native seeded species will influence species diversity and successional trajectories of restoration sites.  相似文献   

4.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

5.
Successful restoration of ephemeral wetlands worldwide is particularly challenging, given the often‐precise relationship between hydrological features and plant community dynamics. Using a long‐term experiment in vernal pool restoration, we compare hydrological and vegetative characteristics of constructed pools with those of adjacent, naturally occurring reference pools. Although constructed and reference pools were similar in maximum water depth and duration of inundation at the beginning of our experiment in 2000, constructed pools were shallower and inundated for shorter periods by 2009. Native vernal pool species were able to establish populations in many constructed pools, and seeding sped their establishment. Comparing seeded plots in constructed pools with unseeded plots in reference pools, we found no significant difference in the cover of seeded species, native species, or exotic species in most years. In recent years, however, native species have declined in both constructed and reference pools. Finally, the cover of native vernal pool species was positively and non‐linearly associated with both water depth and seeding treatment. We conclude that the establishment of appropriate hydrological conditions was necessary, but not sufficient to promote successful performance of vernal pool species in constructed pools. Constructed pools with hydrologic conditions similar to those of reference pools were more likely to support populations of native vernal pool plant species, but only seeded pools were similar to reference pools in abundance of native cover. Most importantly, hydrological conditions in experimental pools have worsened since their construction, which may hamper persistence of native species in this restoration effort.  相似文献   

6.
Flow diversion and invasive species are two major threats to freshwater ecosystems, threats that restoration efforts attempt to redress. Yet, few restoration projects monitor whether removal of these threats improve target characteristics of the ecosystem. Fewer still have an appropriate experimental design from which causal inferences can be drawn as to the relative merits of removing exotic fish, restoring flow, or both. We used a dam decommissioning in Fossil Creek, Arizona, to compare responses of native fish to exotic fish removal and flow restoration, using a before‐after‐control‐impact design with three impact treatments: flow restoration alone where exotics had not been present, flow restoration and exotic fish removal, and flow restoration where exotics remain and a control reach that was unaffected by restoration actions. We show that removal of exotic fish dramatically increased native fish abundance. Flow restoration also increased native fish abundance, but the effect was smaller than that from removing exotics. Flow restoration had no effect where exotic fish remained, although it may have had other benefits to the ecosystem. The cost to restore flow ($12 million) was considerably higher than that to eradicate exotics ($1.1 million). The long‐term influence of flow restoration could increase, as travertine dams grow and re‐shape the creek increasing habitat for native fish. But in the 2‐year period considered here, the return on investment for extirpating exotics far exceeded that from flow restoration. Projects aimed to restore native fish by restoring flow should also consider the additional investment required to eradicate exotic fish.  相似文献   

7.
Assessing the community‐level consequences of ecological restoration treatments is essential to guide future restoration efforts. We compared the vegetation composition and species richness of restored sites that received a range of restoration treatments and those of unrestored sites that experienced varying levels of disturbance. Our study was conducted in the industrially degraded landscape surrounding Sudbury, Ontario, Canada. The Great Lakes–St. Lawrence Forest once present in this area was degraded through logging, mining, and smelting activities beginning in the late 1800s until restoration of the most visibly degraded areas began in 1974. Restoration treatments ranged from simple abiotic enhancements to complex, multistage revegetation treatments using native and non‐native species, which included fertilizing, spreading of ground dolomitic limestone, understory seeding, and tree planting. Canonical correspondence analysis was used to determine which restoration treatments explained differences in the community structure among sites. We found that native understory vascular species richness was similar in restored sites that received more complex restoration treatments and unrestored sites that were mildly disturbed; however, the role of planted trees and non‐native species in the restored communities remains unclear. Understory vascular seeding played a key role in determining community composition of vascular understory and overstory communities, but the time since restoration commenced was a more important factor for nonvascular communities because they received no direct biotic enhancements. The use of non‐native species in the vascular seed mix seems to be slowly encouraging the colonization of native species, but non‐natives continue to dominate restored sites 25 years after restoration began.  相似文献   

8.
Grasslands are undergoing tremendous degradation as a result of climate change, land use, and invasion by non‐native plants. However, understanding of the factors responsible for driving reestablishment of grassland plant communities is largely derived from short‐term studies. In order to develop an understanding of the factors responsible for longer term restoration outcomes in California annual grasslands, we surveyed 12 fields in Davis, CA, U.S.A., in 2015 that were seeded with native species mixtures starting in 2004. Using field surveys, we investigated how invasive plant richness and cover, native plant richness and cover, aboveground biomass, grazing, soil type, and restoration species identity might provide utility for explaining patterns of restoration success. We found a negative relationship between invasive cover and restoration cover, which was attributed to the slow establishment of seeded species and subsequent dominance by weeds. The relationship between invasive cover and restoration cover was modified by grazing, likely due to a change in the dominance of exotic forbs, which have a more similar growing season to restoration species, and therefore compete more strongly for late season moisture. Finally, we found that soil type was responsible for differences in the identity and abundance of invasive plants, subsequently affecting restoration cover. This work highlights the value of focusing resources on reducing invasive species cover, limiting grazing to periods of adequate moisture, and considering soil type for successful long‐term restoration in California annual grasslands. Moreover, observations of long‐term restoration outcomes can provide insight into the way mechanisms driving restoration outcomes might differ through time.  相似文献   

9.
Native plant recovery following wildfires is of great concern to managers because of the potential for increased water run‐off and soil erosion associated with severely burned areas. Although postfire seeding with exotic grasses or cultivars of native grasses (seeded grasses) may mitigate the potential for increased run‐off and erosion, such treatments may also be detrimental to long‐term recovery of other native plant species. The degree to which seeded grasses dominate a site and reduce native plant diversity may be a function of the availability of resources such as nitrogen and light and differing abilities of native and seeded grasses to utilize available resources. We tested the hypothesis that seeded grasses have higher growth rates than native grasses when nitrogen and light availability is high in a greenhouse experiment. To determine how differing resource utilization strategies may affect distribution of native and seeded grasses across a burned landscape, we conducted botanical surveys after a wildfire in northern New Mexico, U.S.A., one and four years after the fire. In the greenhouse study we found seeded grasses to produce significantly more biomass than native grasses when nitrogen and light availability was high. Seeded grasses increased in cover from 1–4 years after the fire only in areas where total soil nitrogen was higher. Increased cover of seeded grasses did not affect recovery of native grasses, but it did lead to reduced native species richness at small scales. The potential negative long‐term consequences of seeding with exotic grasses should be considered in postfire rehabilitation treatments.  相似文献   

10.
The restoration of disturbed ecosystems is challenging and often unsuccessful, particularly when non‐native plants are abundant. Ecosystem restoration may be hindered by the effects of non‐native plants on soil biogeochemical characteristics and microbial communities that persist even after plants are removed. To examine the importance of soil legacy effects, we used experimental restorations of Florida shrubland habitat that had been degraded by the introduction of non‐native grasses coupled with either mechanical disturbance or pasture conversion. We removed non‐native grasses and inoculated soils with native microbial communities at each degraded site, then examined how habitat structure, soil nitrogen, soil microbial abundances, and native seed germination responded over two years compared to undisturbed native sites. Grass removal treatments effectively restored some aspects of native habitat structure, including decreased exotic grass cover, increased bare ground, and reduced litter cover. Soil fungal abundance was also somewhat restored by grass removals, but soil algal abundance was unaffected. In addition, grass removal and microbial inoculation improved seed germination rates in degraded sites, but these remained quite low compared to native sites. High soil nitrogen persisted throughout the experiment regardless of treatment. Many treatment effects were site‐specific, however, with legacies in the more degraded vegetation type tending to be more difficult to overcome. These results support the need for context‐dependent restoration approaches and suggest that the degree of soil legacy effects may be a good indicator of restoration potential.  相似文献   

11.
Spiders (Araneae) play key roles in ecosystems, not only as common and abundant generalist predators, but also as major contributors to biodiversity in many areas. In addition, due to their short generation times and high mobility, spiders respond rapidly to small changes in their environment, potentially making them useful indicators for restoration monitoring. However, few studies have focused on spider responses to grassland restoration in the United States. We compared degraded, native, and restored grassland sites to examine how spider communities and habitat respond to arid grassland restoration. We also examined how responses varied with the age of the restoration project. Spider communities in native sites differed from those in restored and degraded sites in several ways: native sites had fewer spiders and a different community composition than degraded and restored sites. However, native and restored sites had more species than degraded sites. Chronosequence data showed trends for lower abundance, higher species richness, and changing community composition as restoration projects mature. Several habitat variables were closely linked to variation in spider communities including cover of invasive annual grasses, litter, and biological soil crusts. Our data suggest that spider and vegetation responses to grassland restoration efforts can be successful in the long term—with resulting communities becoming more similar to native ones—and that spiders are useful indictors of grassland restoration. Our results also suggest that restoration may involve balancing trade‐offs between ecosystem services, with potential losses in predatory control offset by increases in biodiversity with restoration effort.  相似文献   

12.
We sought to increase the conservation value and ecological resilience of a disturbed woodlot on protected land in suburban Miami‐Dade County, Florida, by restoring a local tropical dry forest community. These efforts included adding 26 “novel native” tropical hardwood hammock species in different SR and density treatments, and conducting regular habitat management actions including exotic biomass removal. We monitored a variety of community composition and forest structure variables over 2 years to assess the success of our restoration efforts and the relative roles of habitat management versus native outplantings in achieving those outcomes. Habitat management proved influential to changing forest structure, while both habitat management and outplantings impacted changes in community composition, at least in the short term. Habitat management and outplantings in combination, however, allowed us to successfully (1) increase the number of native species and decrease the number of exotic species, (2) increase the number of protected plant species on the site, and (3) alter the community composition and forest structure of the site from that of a highly disturbed woodlot to that of a typical Miami Rock Ridge tropical hardwood hammock. Our success in meeting these restoration goals in just 2 years is one such example where simple native outplanting and exotic control projects can produce large returns with minimal resources in the form of time, money, and manpower. Finally, restoring regrowth sites or other remnant habitats may prove an efficient and effective way to conserve biodiversity and basic ecosystem processes in close proximity to metropolitan areas .  相似文献   

13.
Many efforts to restore disturbed landscapes seek to meet ecological goals over timescales from decades to centuries. It is thus crucial to know how different actions available to restoration practitioners may affect ecosystems in the long term, yet few such data exist. Here, we test the effects of seed and compost applications on plant community composition 9 years after their application, by taking advantage of a well‐controlled restoration experiment on a mountainside severely degraded by over 80 years of zinc smelting emissions. We asked whether plots have converged on similar plant communities regardless of initial seed and compost treatments, or if these initial treatments have given rise to lasting differences in whole plant communities or in the richness and abundance of native, exotic, and planted species. We found that compost types significantly affected plant communities 9 years later, but seed mix species composition did not. Observed differences in species richness and vegetative cover were negatively correlated, and both were related to the differences in plant communities associated with different compost types. These observed differences are due primarily to the number and abundance of species not in original seed mixes, of which notably many are native. Our results underscore the importance of soils in shaping the aboveground composition of ecosystems. Differences in soil characteristics can affect plant diversity and cover, which are both common restoration targets. Even in highly polluted and devegetated sites, compost and seed application can reinstate high vegetative cover and allow continued colonization of native species.  相似文献   

14.
Previous studies have compared grassland restoration techniques based on resulting species richness and composition. However, none have determined if different techniques generate different plant distributions in space, which may further impact restoration success. This study tests if there are quadrat‐scale (1 m2) differences between paired drilled and broadcast plantings in diversity, composition, and plant distributions. Higher competition intensity in and more contiguous spaces between rows in drill‐seeded restorations were hypothesized to result in larger patches of native grasses and exotic species. Two paired drill‐ and broadcast‐seeded plantings were sampled in June 2007 in Iowa, U.S.A. Within 10 quadrats in each planting, we measured species abundance with point intercept sampling and plant distributions by dividing the quadrat into 64 cells and recording the most abundant species in each cell. Drilled and broadcast plantings at both sites had similar Simpson’s diversity and evenness. However, the effect of planting type on species richness, composition, and plant distribution was site dependent. Native warm‐season grasses in one site, and exotic species in the second, occupied more space and were distributed in larger patches in drilled plantings. Furthermore, drilled canopies consistently captured more light than broadcast canopies. This suggests that initial differences in seed placement can affect resulting plant distributions, resource use, and potentially long‐term species turnover. Mechanisms structuring vegetation in these communities need to be further investigated to determine if this approach can provide more information on long‐term diversity maintenance in restorations than traditional measures.  相似文献   

15.
One goal of post‐fire native species seeding is to increase plant community resistance to exotic weed invasions, yet few studies address the impacts of seeding on exotic annual establishment and persistence. In 2010 and 2011, we investigated the influence of seedings on exotic annuals and the underlying microbial communities. The wildfire site in northern Utah was formerly dominated by Artemisia tridentata ssp. wyomingensis, but burned in September 2008. Experimental seeding treatments were installed in November 2008 to examine strategies for establishing native species using two drills, hand broadcasts and different timing of seed applications (resulting in 13 seeding treatments). We collected aboveground biomass of invasive annuals (Halogeton glomeratus, Salsola kali, and Bromus tectorum), other volunteer plants from the extant seed bank, and seeded species from all treatments in the second and third years after fire. We sampled soils within microsites beneath native perennial bunchgrass and exotic annuals to characterize underlying soil microbial communities. High precipitation following seeding led to strong seedling establishment and we found few differences between seeding treatments established with either drill. All seeded treatments reduced exotic biomass by at least 90% relative to unseeded controls. Soil microbial communities (phospholipid fatty acid analysis), beneath B. tectorum, Poa secunda, and Pseudoroegneria spicata microsites differed little 3 years after fire. However, microbial abundance beneath P. spicata increased from June to July, suggesting that microbial communities beneath successful seedings can vary greatly within a single growing season.  相似文献   

16.
Questions: (1) What is the recovery potential of soil seed banks of intact, average and degraded floodplain woodlands? (2) Will soil seed banks of different functional groups (native and exotic, dryland and wetland) display contrasting responses to site degradation? Location: Semi‐arid, seasonally flooded woodland of eastern Australia. Methods: Diversity, abundance and composition of soil seed banks were assessed using a glasshouse study. Surface soil samples were taken from a total of nine sites with three levels of degradation (intact, average, degraded) from three microsites (sub‐canopy, canopy edge, open). Results: A total of 26 662 individuals of 82 species germinated. Seed abundance increased tenfold from intact to degraded sites, but there was no effect on richness. Species composition of all functional groups varied significantly among degradation states. Seeds of native wetland and exotic dryland species were more abundant in degraded than in intact sites. However, the abundance of native dryland germinants did not differ among degradation classes and no seeds of exotic wetland species were observed. Richness of exotic dryland species was significantly higher in degraded sites. Conclusions: Increasing disturbance promoted seed banks of exotic but not native dryland species and native but not exotic wetland species. Unexpectedly, disturbance promoted the abundance of native seeds more than exotics, although this was driven by a single species. Our results suggest that the dryland phase of the floodplain community is more resilient to degradation than predicted.  相似文献   

17.
Restored grasslands comprise an ever‐increasing proportion of grasslands in North America and elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for recovery of key plant community components on former exotic, cool‐season pastures using a chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West‐Central Iowa. We assessed trends in Simpson's diversity and evenness, richness and abundance of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). Simpson's diversity and evenness and perennial invasive species abundance all declined with restoration site age. As a group, restoration sites had greater richness of native C3 species with late phenology, but lower richness and abundance of species with early phenology relative to remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of late phenology C3 plants were similar between restoration and remnant sites. Observed declines in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than absolute decreases in the abundance of perennial C3 species. In contrast to other studies, restoration seeding appears to have led to successful establishment of tallgrass prairie species that were likely to be included in seeding mixtures. While several floristic measures indicate convergence of restoration and remnant sites, biodiversity may be further enhanced by including early phenology species in seeding mixes in proportion to their abundance on remnant prairies.  相似文献   

18.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

19.
Many semi-arid shrublands in the western US have experienced invasion by a suite of exotic grasses and forbs that have altered community structure and function. The effect of the exotic grasses in this area has been studied, but little is known about how exotic forbs influence the plant community. A 3-year experiment in southern California coastal sage scrub (CSS) now dominated by exotic grasses was done to investigate the influence of both exotic grasses (mainly Bromus spp.) and exotic forbs (mainly Erodium spp.) on a restoration seeding (9 species, including grasses, forbs, and shrubs). Experimental plots were weeded to remove one, both, or neither group of exotic species and seeded at a high rate with a mix of native species. Abundance of all species varied with precipitation levels, but seeded species established best when both groups of exotic species were removed. The removal of exotic grasses resulted in an increase in exotic and native forb cover, while removal of exotic forbs led to an increase in exotic grass cover and, at least in one year, a decrease in native forb cover. In former CSS now converted to exotic annual grassland, a competitive hierarchy between exotic grasses and forbs may prevent native forbs from more fully occupying the habitat when either group of exotics is removed. This apparent competitive hierarchy may interact with yearly variation in precipitation levels to limit restoration seedings of CSS/exotic grassland communities. Therefore, management of CSS and exotic grassland in southern California and similar areas must consider control of both exotic grasses and forbs when restoration is attempted.  相似文献   

20.
For tropical forest restoration to result in long‐term biodiversity gains, native trees must establish self‐sustaining populations in degraded sites. While many have asked how seedling recruitment varies between restoration treatments, the long‐term fate of these recruits remains unknown. We address this research gap by tracking natural recruits of 27 species during the first 7 years of a tropical forest restoration experiment that included both planted and naturally regenerating plots. We used an individual‐based model to estimate the probability that a seedling achieves reproductive maturity after several years of growth and survival. We found an advantage for recruits in naturally regenerating plots, with up to 40% increased probability of reproduction in this treatment, relative to planted plots. The demographic advantage of natural regeneration was highest for mid‐successional species, with relatively minor differences between treatments for early‐successional species. Our research demonstrates the consequences of restoration decision making across the life cycle of tropical tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号