首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋小艳  王长庭  胡雷  刘丹  陈科宇  唐国 《生态学报》2022,42(4):1538-1548
选取若尔盖沼泽化草甸及其不同退化程度为研究对象,利用湿筛法进行团聚体分级,并测定各组分有机碳含量,研究了高寒草甸退化对土壤有机碳(SOC,Soil Organic Carbon)、团聚体以及团聚体结合有机碳(OC,Organic Carbon)的影响,旨在从土壤团聚体及其内部组成的角度去解析SOC的变化特征及机制。结果显示:1)退化使大团聚体比例降低且内部组成改变,团聚体稳定性降低。2)退化使各粒级团聚体及大团聚体内部组分结合OC含量均显著降低。3)大团聚体及其内部粗颗粒有机质中OC储量减少是退化中土壤有机碳流失的主要形式,微团聚体、闭蓄态微团聚体和闭蓄态黏粉粒中OC储量随退化增加。4)退化显著降低了高寒草甸SOC含量和储量,表层(0—10 cm)SOC含量变化主要决定于微团聚体和大团聚体OC含量,亚表层(10—20 cm)SOC含量主要受大团聚体OC含量和团聚体平均重量直径(MWD)影响;对于SOC储量,团聚体MWD是表层SOC储量的最重要影响因素,而亚表层SOC储量取决于团聚体组成、土壤理化性质和大团聚体OC含量的综合作用。研究结果表明,改善土壤团聚体组成和稳定性,增加大团聚体有机...  相似文献   

2.
为探究黑土团聚体内土壤有机碳(SOC)的“分馏”特征, 揭示不同植被覆盖下土壤团聚体的固碳机制, 该文以中国科学院海伦农业生态系统国家野外综合研究站内不同植被覆盖(草地、农田和裸地)长期定位实验的土样为研究对象, 利用团聚体湿筛分组、有机碳物理和化学分组相结合的方法, 研究了黑土团聚体及其内部的碳密度和腐殖质组分的碳分配特征。研究发现, 黑土经过不同植被覆盖31年后, 长期草地覆盖使土壤表层SOC、全氮(TN)含量显著增加, 农田和无植被覆盖的裸地SOC含量减少, 且在裸地显著降低。3种处理中, 2-0.25 mm (含2 mm, 下同)粒级团聚体均为优粒级。土壤团聚体的稳定性顺序为草地>农田>裸地。草地覆盖使土壤大团聚体的比例和有机碳库增加, 微团聚体和粉黏粒所占比例和碳库均减少, 说明草地覆盖促进了土壤大团聚体形成, 土壤固碳能力显著增强。而农田和裸地因外源碳投入少, 有机碳含量均是微团聚体>大团聚体>粉黏粒, SOC主要分布在微团聚体中。不同植被覆盖处理对土壤团聚体内密度组分和腐殖质各组分碳的富集“分馏”作用很明显, 与农田和裸地相比, 长期草地植被覆盖处理>2 mm和2-0.25 mm粒级团聚体中轻组碳含量富集的较多, 2-0.25 mm粒级团聚体中富里酸、胡敏酸和胡敏素的碳富集均最高, 而农田和裸地促进了微团聚体内腐殖质碳的富集。草地覆盖显著增加了大团聚体内活性有机碳组分, 来源于植物的碳首先进入到大粒径的团聚体中, 使土壤团聚结构显著改善, 农田和无植被覆盖的裸地土壤中轻组碳含量显著降低, 团聚体内有机碳以重组碳和胡敏素为主, 稳定化程度更高。  相似文献   

3.
探究不同林龄杉木人工林土壤团聚体各形态磷素的分布特征有利于提升杉木人工林土壤磷素有效性。本研究选取位于广西融水县的幼龄(9 a)、中龄(17 a)、成熟(26 a)杉木人工林和邻近撂荒地(CK),利用干筛法将采集到的表层(0~20 cm)原状土壤分为4个粒级团聚体(>2、1~2、0.25~1和<0.25 mm),测定各粒级团聚体中不同形态磷组分。结果表明: 1)不同林龄杉木人工林土壤团聚体组成差异显著,CK和各林龄杉木人工林中>2 mm粒级团聚体含量显著较高,随林龄的增长先增后减,在17 a时最高;土壤平均重量直径(MWD)和几何平均直径(GMD)的变化趋势与>2 mm粒级团聚体一致。2)CK和各林龄杉木人工林中各粒级土壤团聚体全磷、无机磷和有机磷含量差异均不显著,而土壤有效磷含量在>2 mm粒级团聚体中显著较高,达1.23~7.33 mg·kg-1;不同林龄杉木人工林土壤团聚体及全土全磷、有效磷和无机磷含量均显著高于CK,并随杉木林龄的增长先增后减,全土总磷和有效磷含量在9 a时最高,分别为322.40和7.33 mg·kg-1,全土无机磷含量在17 a时最高,为114.05 mg·kg-1;全土有机磷含量随杉木林龄的增长先增再减再增,在9 a时最高,为210.00 mg·kg-1。3)不同粒级土壤团聚体磷储量与土壤团聚体组成比例显著相关。CK和各林龄杉木人工林中>2 mm粒级团聚体各形态磷储量较高。除有机磷外,各形态土壤磷储量均随杉木林龄的增长先增后减。综上,林龄17 a之前,杉木人工林的种植有利于提升土壤团聚体稳定性,促进土壤磷素水平的提升;林龄17 a后,>2 mm粒级团聚体的破碎导致土壤团聚体稳定性和土壤磷素供应水平逐渐下降。因此,在杉木人工林培育栽种17 a以后应重视土壤中>2 mm粒级团聚体的保护,以保障土壤质量,维持土壤供磷水平。  相似文献   

4.
Land use change (LUC) may detrimentally affect the soil organic carbon (SOC) within different soil fractions; directly supplemented by significant contribution to soil CO2 efflux (SCE). To understand the governing mechanism, experimental data were collected for SOC and SCE along with soil physico-chemical, microbial and aggregate characteristics across adjacent secondary forest (SF)-grassland (GL)-cropland (CL) sequence in dry tropical ecosystems. A significant change in SOC and SCE was observed from SF to GL and CL systems, respectively; though moderately from GL to CL system. Respective decrease in SOC (31 and 42%); soil ammonium-N to nitrate-N ratio (ANR; 96 and 86%), microbial biomass C (MBC; 30 and 50%), nitrogen (MBN; 6 and 33%) and MBC/MBN ratio (25 and 24%); whereas increase in SCE (43 and 57%) and soil nitrate-N availability (340 and 592%) was observed from SF to GL and CL systems. Moreover, aggregate physical distribution shifted toward smaller size fractions; whereas aggregate-associated total C and KMnO4-labile-C concentration and carbon management index (CMI) across aggregate-size fractions decreased linearly with the land use sequence. SOC was majorly governed by macro-aggregate water stability (WASmacro) and MBC; whereas SCE by CMI of macro-aggregate (CMImacro) fraction. Furthermore, the ANR showed positive correlation with microbial (i.e. MBC and MBC/MBN ratio) and macro-aggregate physical (i.e. WASmacro) and chemical stability (i.e. CMImacro). It indicates that a shift in the microbial community with the land use may affect the relative availability of inorganic N pools and associated aggregate characteristics. Thus, our results indicate that a shift in ANR with LUC may be an unexplored and crucial indicator of soil C dynamics mediating quantitative and qualitative changes in microbial and aggregate characteristics in dry tropical ecosystems. Further, a critical emphasis is needed on the relationship of SOC dynamics with ANR for future studies at various spatiotemporal scales worldwide to recognize its potential role as ecological indicator of SOC dynamics. Also, its inclusion under climatic models may help to better predict the future climate.  相似文献   

5.
Abstract The cell density and the genetic structure of bacterial subcommunities (further named pools) present in the various microenvironments of a silt loam soil were investigated. The microenvironments were isolated first using a procedure of soil washes that separated bacteria located outside aggregates (outer part) from those located inside aggregates (inner part). A nondestructive physical fractionation was then applied to the inner part in order to separate bacteria located inside stable aggregates of different size (size fractions, i.e., two macroaggregate fractions, two microaggregate fractions, and the dispersible day fraction). Bacterial densities measured by acridine orange direct counts (AODC) and viable heterotrophic (VH) cell enumerations showed the heterogeneous quantitative distribution of cells in soil. Bacteria were preferentially located in the inner part with 87.6% and 95.4% of the whole AODC and VH bacteria, respectively, and in the microaggregate and dispersible clay fractions of this part with more than 70% and 80% of the whole AODC and VH bacteria, respectively. The rRNA intergenic spacer analysis (RISA) was used to study the genetic structure of the bacterial pools. Different fingerprints and consequently different genetic structures were observed between the unfractionated soil and the microenvironments, and also among the various microenvironments, giving evidence that some populations were specific to a given location in addition to the common populations of all the microenvironments. Cluster and multivariate analysis of RISA profiles showed the weak contribution of the pools located in the macroaggregate fractions to the whole soil community structure, as well as the clear distinction between the pool associated to the macroaggregate fractions and the pools associated to the microaggregate ones. Furthermore, these statistical analyses allowed us to ascertain the influence of the clay and organic matter content of microenvironments on the genetic structure relatedness between pools. Received: 15 December 1999; Accepted: 5 April 2000; Online Publication: 19 May 2000  相似文献   

6.
放牧作为草地的主要利用方式,对草地生态系统的结构和功能具有显著影响。目前长期放牧对草地土壤团聚体组成及其稳定性的影响还知之甚少。本研究依托2004年建立的内蒙古短花针茅荒漠草原长期放牧试验平台,设置围封禁牧(对照)、轻度、中度和重度放牧强度,研究不同放牧强度下土壤团聚体组成和稳定性的变化,并结合相关土壤理化指标探究影响土壤团聚体稳定性的主要因素。结果表明: 放牧显著改变了不同粒径土壤团聚体的组成。与对照相比,大团聚体(0.25~2 mm)含量在轻度放牧下保持不变,而在中度和重度放牧下显著下降;重度放牧显著降低了小团聚体(0.053~0.25 mm)含量,而中度和重度放牧显著增加了微团聚体(<0.053 mm)含量。土壤团聚体稳定性在轻度放牧下维持较高水平,但在中度和重度放牧下显著降低。土壤团聚体稳定性与大团聚体含量呈显著正相关,与微团聚体含量呈显著负相关。土壤pH值、容重、有机碳及其他理化性质共同作用于土壤团聚体组成进而对其稳定性产生影响。综上,对于荒漠草原而言,适度放牧可以维持较高的土壤团聚体稳定性。  相似文献   

7.
The effect of conversion of grassland to woodland on organic carbon (OC) and total nitrogen (TN) has significance for global change, land resource use and ecosystem management. However, these effects are always variable. Here, we show results of a study in an arid area in China on profile distribution of OC and TN in soils covered by two different woody tree canopies and outer canopy space (grassland between woody plant canopies). The soils were at various slope positions (upper, middle and lower slopes) for Chinese pine (Pinus tabulaeformis) and Korshrinsk peashrub (Caragana korshinskii) lands, and of different soil orders (Castanozems, Skeletal, Loessial and Aeolian soils). The objectives were to relate the effects of land use change on OC and TN to slope position and soil order. Soil OC and TN were significantly larger at Korshrinsk peashrub slope locations than at Chinese pine slope locations. Soil OC and TN were small at the lower slope position for Korshrinsk peashrub, however, they were largest at the middle slope for Chinese pine. Korshrinsk peashrub always increased soil OC and TN under brush canopy at the three slope positions, while Chinese pine increased them at lower slopes and decreased them at upper slopes. For the soil types, OC and TN in Korshrinsk peashrub land were in the order of Castanozems > Skeletal > Loessial > Aeolian soils. Korshrinsk peashrub also increased OC and TN under brush canopy in the four soils. Our results indicated that soil OC and TN in canopy soils differed greatly from associated values in the outer canopy soils, and the effects of grassland afforestation varied significantly with tree species, slope position, and soil type. Therefore, we suggest that differentiating such factors can be an effective approach for explaining variances in OC and N changes caused by land use conversion.  相似文献   

8.
蓝家程  沈艳 《广西植物》2020,40(6):765-775
为揭示岩溶槽谷区植被恢复对土壤结构、土壤有机碳积累和碳库管理水平的影响,该研究选取了弃耕地、林地和草地三种土地利用方式,测定0~20 cm土层土壤团聚体组成、土壤有机碳(SOC)、团聚体有机碳以及土壤易氧化有机碳(EOC)含量。结果表明:(1)与弃耕地相比,林地和草地土壤团聚体平均重量直径(MWD)、几何平均重量直径(MGD)和2~5 mm团聚体含量显著增加,林地和草地土壤团聚体组成以2~5 mm为主,弃耕地以0.5~1 mm和0.25 mm为主,表明退耕还林还草能够促进土壤团聚体形成和稳定。(2)土壤团聚体有机碳含量呈现出林地草地弃耕地,随团聚体粒级增加而增加的趋势;林地和草地以2~5 mm团聚体有机碳贡献率最大,弃耕地则以0.25 mm团聚体贡献为主,表明弃耕地转变为林地和草地后,土壤SOC积累主要归功于2~5 mm有机碳含量的增加,以及团聚体由小粒径向大粒径转变。(3)与弃耕地比较,林地和草地土壤SOC、EOC含量和碳库管理指数(CPMI)均显著提高,其中土壤EOC含量和CPMI变化较为明显;土壤EOC可作为土壤碳库早期变化的有效指标,CPMI能够良好地表征植被恢复对土壤SOC和EOC的影响。  相似文献   

9.
Chepkwony  C.K.  Haynes  R.J.  Swift  R.S.  Harrison  R. 《Plant and Soil》2001,234(1):83-90
This study assessed the effects of different farming systems, namely woodlot (WL), alley farming (AL), conventional tillage (CT) and natural fallow (NF) on the variability of organic carbon (OC) content and mean weight diameter (MWD) of a degraded Ferric Acrisol in the sub-humid zone of Ghana. The soils under woodlot accumulated the highest amount of organic carbon (18.6 g kg–1) with the least spatial variability apparently due to the greater additions of litter and minimum tillage. The conventionally tilled soil had the least OC content (13.1 g kg–1). Similar to the OC content, the woodlot soils also had the highest aggregate stability (MWD = 1.78 mm) and the least spatial variability. The stability of soil aggregates under the farming systems was greatly influenced by OC content; there was a good correlation between OC and MWD (r > 0.62**). Correlograms showed that OC and MWD are space dependent. The correlation length for OC under the different farming systems followed the order WL > NF > AL > CT, indicating that WL ensured a greater uniform distribution soil organic matter. The spatial distribution in MWD followed the same trend observed for OC. The MWD in the other farming systems was poorly related from point to point with shorter k-values, suggesting lack of uniformity due to low accumulation of OC. Generally, the woodlot system appeared to be a better, low-input restorer of soil productivity.  相似文献   

10.
Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant–microbe–mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant‐derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial‐derived C in the silt‐clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above‐ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0–5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata‐invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co‐metabolism of pine‐derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems.  相似文献   

11.
The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (>250 μm), microaggregate (53–250 μm), and d-clay (<2 μm) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.  相似文献   

12.
The main objective of this study was to determine changes in microbial response in natural soil aggregates for soil characterization in different fluvial land shapes. This study was carried out in fluvial lands formed on accumulated sediment depositions carried by K?z?l?rmak River. The majority soils of the study area were classified as Typic Ustifluvent and Typic Haplustept in Soil Taxonomy. It was found that macroaggregates (especially >6300 μm and 2000–4750 μm diameters) of all soil samples were higher than microaggregate of soils. In addition, it was determined that the Corg content varies between 0.41–0.91% in soil samples. Cmic content was also found higher level in aggregates involved <250 and 250–425 μm diameters as compared to other aggregate size classes. Moreover, we detected that Corg:Cmic ratio was much higher in macroaggregates than in microaggregate fractions. BR levels were also greater in macroaggregates of >6,300, 4,750–6,300 and 2,000–4,750 μm than in the other macroaggregates sizes and microaggregates. Consequently, macroaggregates have relatively more Corg level than the Corg level in microaggregates, even if the absolute values of Cmic were the lower. This study thus evidenced contrasting microbial habitats and their response in different soil aggregate size formed in various developed soils.  相似文献   

13.
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.  相似文献   

14.
土地利用对石漠化地区土壤团聚体有机碳分布及保护的影响   总被引:14,自引:0,他引:14  
对贵州省关岭县石漠化地区不同土地利用方式下的土壤团聚体的稳定性、有机碳分布以及大团聚体有机碳矿化进行了研究,探讨了大团聚体对有机碳的保护作用,以期为选择合理的石漠化治理措施提供科学依据。选取了当地主要的4种土地利用方式,分别为水田(水旱轮作)、旱地、花椒林和火龙果林;其中花椒林和火龙果林位于石漠化治理区内。采用湿筛法分离出各级土壤团聚体并结合室内恒温培养法测定原状和破碎大团聚体中有机碳的矿化动态变化,其中大团聚体保护性碳含量为破碎与原状大团聚体有机碳在42 d内累积矿化量的差值。结果表明:土地利用方式对土壤团聚体稳定性具有显著影响。水田土壤团聚体稳定性要明显优于旱地、花椒林和火龙果林,且后3种土地利用方式间也存在显著差异。土壤有机碳也受到土地利用方式的影响,水田和旱地土壤有机碳含量要明显高于火龙果林和花椒林。各粒级团聚体有机碳含量在土地利用方式间具有较大差异,2 5 mm、0.25 2 mm和<0.25 mm团聚体中有机碳含量按水田、火龙果林、旱地和花椒林依次下降,5 8 mm团聚体中有机碳含量则以花椒林最高,其次是水田和火龙果林,旱地最低。但是就各粒径团聚体的有机碳库而言,<0.25 mm团聚体是土壤有机碳的主要载体。花椒林、旱地、火龙果和水田的大团聚体保护性碳含量分别为83.37、78.86、73.81\,61.04 mg/kg,其差异表明花椒林土壤大团聚体对有机碳的保护作用最强,其次是旱地和火龙果林,水田最弱。因此,在该地区种植花椒林和火龙果林可以改善其土壤质量,其可能机理是通过增加土壤中大团聚体含量,同时增强大团聚体对有机碳的保护作用。  相似文献   

15.
Afforestation is a prevalent practice carried out for soil recovery and carbon sequestration. Improved understanding of the effects of afforestation on soil organic carbon (SOC) content and dynamics is necessary to identify the particular processes of soil organic matter (SOM) formation and/or decomposition that result from afforestation. To elucidate these mechanisms, we have used a sequential density fractionation technique to identify the transfer mechanisms of forest derived C to soil fractions and investigate the impact of afforestation on SOC sequestration. Surface soil samples from continuous maize crop land (C4) and forest land (C3), which had been established 5, 12 and 25 yr, respectively, on the Northeast China Plain were separated into five density fractions. SOC, nitrogen (N) concentration and δ13C data from the three forests and adjacent cropland were compared. Afforestation decreased SOC concentration in the < 2.5 g cm-3 fractions from 5 yr forest sites, but increased SOC content in the < 2.0 g cm-3 fractions from 25 yr forest sites. Afforestation did not affect soil mass distribution, SOC and N proportional weight distributions across the density fractions. The < 1.8 g cm-3 fractions from 12 and 25 yr forests showed higher C/N and lower δ13C as compared to other fractions. Incorporation of forest litter-derived C occurred from low density (< 1.8 g cm-3) fractions to aggregates of higher density (1.8-2.5 g cm-3) through aggregate recombination and C transport in the pore system of the aggregates. Some forest litter-derived C could transfer from the light fractions or directly diffuse and adsorb onto mineral particles. Results from this study indicate that microaggregate protection and association between organic material and minerals provide major contribution to the SOC sequestration in the afforested soil system.  相似文献   

16.
We present results on changes in soil properties following land use change over an approximately 55‐year period at Fort Benning, Georgia, U.S.A. Soil cores were taken at 129 locations that were categorized as reforested (field/bare ground in 1944 and forest in 1999), disturbed (field/bare ground in 1944 and 1999), or reference forests (forest in 1944 and 1999). Soil disturbance included historic agriculture (pre‐1944) and military training (post‐1944). Density in mineral soils exhibited a historic land use legacy effect (reference < reforested < disturbed). Rates of change in bulk density decreased with depth and estimated total times to reach reference forest levels ranged from 83 (0–10 cm) to 165 (30–40 cm) years. A land use legacy effect on C stock was apparent in the O‐horizon and in 30‐ to 40‐cm soil increment (reference > reforested > disturbed). Soil C stock in all other increments and in particulate organic matter was affected by disturbance; however, no legacy was apparent (reference = reforested > disturbed). For the entire soil profile (O‐horizon to 40 cm), rate of C accrual was 28 g m−2 yr−1 (1.5%/yr). Nitrogen stocks were affected by disturbance in the O‐horizon and 0‐ to 10‐cm increment; however, no legacy effect was detected (reference = reforested > disturbed). Nitrogen accumulated at 0.56 g m−2 yr−1 (0.6%/yr) for the entire soil profile. At Fort Benning, soil C and N stocks of reforested stands were similar to those of reference forested stands after approximately 55 years. However, soil bulk density was greater on reforested stands than reference forest stands at 55 years and may require an additional century to reach reference levels.  相似文献   

17.
Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630‐ha area of mid‐ and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire‐vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid‐ and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4–6 years, 16 years) and Jeffrey pine–white fir (Abies concolor) (JP‐WF) (5–10 years, 22 years) and longer in high elevation red fir (Abies magnifica)— western white pine (Pinus monticola) (RF‐WWP) forests (9–27 years, 70 years). Median fire return intervals were also shorter on east‐facing (6–9 years, 16.3 years) and longer on south‐ (11 years, 32.5 years) and west‐facing slopes (22–28 years, 54‐years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP‐WF (17.5%) than in RF‐WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid‐ and upper montane forests due to twentieth‐century fire exclusion. Forest density increased in JP and JP‐WF forests and white fir increased in JP‐WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF‐WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre‐settlement role in montane forest dynamics.  相似文献   

18.
土地利用方式转变对赣中地区土壤活性有机碳的影响   总被引:1,自引:0,他引:1  
选取江西省安福县15年撂荒地和3种林地(毛竹林人工林、木荷次生林、杉木人工林),研究土地利用方式改变对土壤有机碳库以及活性有机碳的影响.结果表明:不同样地的土壤总有机碳、微生物生物量碳、热水浸提有机碳和易氧化态碳均表现为毛竹人工林>杉木人工林>木荷次生林>撂荒地;与对照(撂荒地)相比,3种林地的土壤有机碳含量、碳储量及活性有机碳含量均随土壤深度增加而递减,表层富集现象明显;不同土壤活性有机碳的分配比例明显不同,其中,土壤易氧化态碳占总有机碳的比例最大,微生物生物量碳所占比例最小,土壤总有机碳、微生物生物量碳、热水浸提有机碳和易氧化态碳间的相关性均达到极显著水平.后三者表征了土壤中活性较高部分碳的含量,对土地利用方式的响应较敏感,可以作为评价赣中地区土壤质量和肥力的指标之一.  相似文献   

19.
The present study was carried out to elucidate the effect of progesterone (P4) from the induced corpus luteum (CL) on the characteristics of the dominant follicle (DF) in dromedary camels (Camelus dromedarius). Ovarian follicular and induced CL dynamics were monitored by transrectal ultrasonography in eight camels during the peak breeding season. The characteristics of the DF were monitored daily from the day of emergence into a wave, until it appeared to lose its dominance and the DF of a subsequent wave grew to a diameter of 13-17 mm. At this stage ovulation was induced by hCG and the DF was monitored every 8 h for 48 h. After ovulation, CL dynamics and follicular development (emergence of a new wave, growth and mature phase of the selected DF) were monitored daily. Blood samples were collected during each ultrasound examination to study the P4 profile in these animals. The CL developed to a maximum size (22.55 ± 3.24 mm) with a peak concentration of P4 (4.60 ± 2.57 ng/ml) 7 days after ovulation. The size of the CL was positively correlated with the P4 concentration (r = 0.612) during the different stages of the CL dynamics. The presence of CL did not affect the linear growth rate, duration of growth and mature phases of the DF. The development of the DF to its maximum size during its mature phase and inter-wave interval were not affected by the P4 secreted by the induced CL. In conclusion, there is no evidence from this study to suggest that P4 from induced CL altered the characteristics of a DF in dromedary camels.  相似文献   

20.
The intraovarian relationships among dominant follicle (DF), corpus luteum (CL), and number of follicles between Days 0 to 5 (Day 0 = ovulation) in wave 1 (n = 65 waves) and Days 9 to 13 in wave 2 (n = 62) were analyzed in separate experiments in Bos taurus heifers. Ovaries were grouped into intraovarian patterns of DF–CL, DF alone, CL alone, and neither DF nor CL. In wave 1, the pattern frequencies of DF–CL or neither DF nor CL (34% each) were greater (P < 0.0004) than for DF alone or CL alone (16% each). The number of growing follicles ≥5.0 mm, was greater (P < 0.0001) in ovaries with the DF, even when the DF was removed from the tally (P < 0.03). In a factorial analysis of wave 1, there was a positive main effect of DF (3.9 ± 0.2 vs. 2.2 ± 0.2 follicles; P < 0.0001), but the main effect of CL and the interaction of DF and CL were not significant. In a factorial analysis of wave 2, there were more (P < 0.0001) follicles greater than 6 mm in ovaries with a DF when the DF was included and an approaching difference (P < 0.09) when the DF was excluded. The main effect of CL and the interaction of DF and CL were not significant. The hypothesis that both the DF and CL have a positive intraovarian effect on number of follicles in waves 1 and 2 was only partly supported; the DF, but not the CL, had an effect in the factorial analyses. Previous reports in cattle and sheep of a positive intraovarian effect of CL on number of follicles are questionable in that location of the DF was not considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号