首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water‐holding soil amendments such as super‐absorbent polymer (SAP) may improve native species establishment in restoration but may also interact with precipitation or invasive species such as Bromus tectorum L. (cheatgrass or downy brome) to influence revegetation outcomes. We implemented an experiment at two sites in Colorado, U.S.A., in which we investigated the interactions of drought (66% reduction of ambient rainfall), B. tectorum seed addition (BRTE, 465 seeds/m2), and SAP soil amendment (25 g/m2) on initial plant establishment and 3‐year aboveground and belowground biomass and allocation. At one site, SAP resulted in higher native seeded species establishment but only with ambient precipitation. However, by the third year, we detected no SAP effects on native seeded species biomass. Treatments interacted to influence aboveground and belowground biomass and allocation differently. At one site, a SAP × precipitation interaction resulted in lower belowground biomass in plots with SAP and drought (61.7 ± 7.3 g/m2) than plots with drought alone (91.6 ± 18.1 g/m2). At the other site, a SAP × BRTE interaction resulted in higher belowground biomass in plots with SAP and BRTE (56.6 ± 11.2 g/m2) than BRTE alone (35.0 ± 3.7 g/m2). These patterns were not reflected in aboveground biomass. SAP should be used with caution in aridland restoration because initial positive effects may not translate to long‐term benefits, SAP may uniquely influence aboveground versus belowground biomass, and SAP can interact with environmental variables to impact developing plant communities in positive and negative ways.  相似文献   

2.
增温对莲子草属入侵植物与本地同属植物化学物质组成和天敌昆虫的影响 气候变暖影响植物生长和生理活动,然而气候变暖如何改变入侵植物化学物质组成并间接影响其与植食性昆虫互作还少有报道。本研究以入侵植物空心莲子草(Alternanthera philoxeroides)及其本地同属 植物莲子草(A. sessilis)为对象,探究增温对其叶片化学物质组成的影响并进一步检验这些变化如何影响两 种植食性昆虫虾钳菜披龟甲(Cassida piperata)和斜纹夜蛾(Spodoptera litura)的生长发育。通过模拟增温实验,探究增温对空心莲子草和莲子草13个叶片化学物质的影响,并用其饲养两种植食性昆虫,测量它们的生长和发育时间。研究结果显示,增温显著改变了空心莲子草和莲子草叶化学物质组成;增温降低了空心莲子草叶片氮浓度,增加了莲子草叶片总黄酮和总酚浓度;增温对其它营养物质(果糖、蔗糖、总可溶性糖和淀粉)随物种和具体物质发生改变;采用增温处理的莲子草饲养的虾钳菜披龟甲蛹重和斜纹夜蛾幼虫重量,以及增温处理的空心莲子草饲养的斜纹夜蛾幼虫重量,显著低于对照不增温处理;此外,采用增温处理的莲子草饲养的斜纹夜蛾幼虫发育时间显著延长。这些结果表明,增温对植物化学物质组成的影响随物种发生变化,增温对入侵植物和本地植物化学物质组成的影响间接改变了其与植食性昆虫的互作关系。  相似文献   

3.
Anthropogenic disturbances associated with urban ecosystems can create favorable conditions for populations of some invasive plant species. Light pollution is one of these disturbances, but how it affects the growth and establishment of invasive plant populations is unknown. Cheatgrass (Bromus tectorum) is a problematic invasive species where it has displaced native grassland communities in the United States, but to our knowledge, there have been no studies of the ecological factors that affect cheatgrass presence in urban ecosystems. We conducted field surveys in urban alleys in Denver, Colorado, to compare the presence of cheatgrass at sites with and without artificial light at night (hereafter artificial light) from streetlights. These streetlights are mounted on utility poles, which cause ground disturbance when installed in alleys; we were able to test the independent effect of poles on cheatgrass establishment because not all poles have streetlights on them. We found that cheatgrass was positively associated with the presence of streetlights and to a lesser extent poles. In addition to cheatgrass, we also found that other plants were positively associated with the presence of both poles and streetlights. Our results suggest that artificial light may benefit the occurrence of cheatgrass and other plant species in urban settings. While invasive populations of cheatgrass in wild habitats attract the most attention from managers, we suggest more consideration for this grass in urban environments where its growth and establishment benefit from anthropogenic changes.  相似文献   

4.
5.
外来植物入侵对生态系统生产力的影响研究综述   总被引:2,自引:0,他引:2  
闫宗平  仝川 《生态科学》2007,26(3):256-262
外来植物入侵已成为全球尺度生态系统面临的一个主要环境问题。分析和总结了外来植物入侵对于生态系统生物量、生产力和碳固定的影响以及主要的影响因素,多数研究结果显示外来植物入侵会增加生态系统生物量和生产力,并进而增加生态系统对于二氧化碳气体的固定,但也有些研究结果得出相反的结论;另外,造成增加或减少结果的成因也是复杂的。系统全面地研究外来植物入侵,特别是考虑到空间上异质性和入侵的时间尺度,在研究外来植物入侵对生态系统生物量、生产力以及碳固定的影响方面尤为重要。  相似文献   

6.
Laakso  Jouni  Setälä  Heikki  Palojärvi  Ansa 《Plant and Soil》2000,225(1-2):153-165
We studied the sensitivity of soil microbial communities and ecosystem processes to variation in the vertical and horizontal structure of decomposer food web under nitrogen poor and N-enriched conditions. Microcosms with humus and litter layer of boreal forest floor, birch seedlings infected with mycorrhizal fungi, and decomposer food webs with differing trophic group and species composition of soil fauna were constructed. During the second growing period for the birch, we irrigated half of the microcosms with urea solution, and the other half with de-ionised water to create two levels of N concentration in the substrate. During the experiment night time respirations of the microcosms were measured, and the water leached through the microcosms was analysed for concentration of mineral N, and nematode numbers. The microcosms were destructively sampled after 37 weeks for plant biomass and N uptake, structure of soil animal and microbial community (indicated by PLFA profiles), and physical and chemical properties of the humus and litter materials. Predatory mites and nematodes had a negative influence on the biomass of their microbivorous and microbi-detritivorous prey, and microbi-detritivores affected the biomass and community structure of microbes (indicated by PLFA-analysis). Moreover, predatory mites and nematodes increased microbial biomass and changed the microbial community structure. The decomposer food web structure affected also N uptake and growth of plants. Microbi-detritivorous fauna had a positive effect, whereas predators of microbial and detritus feeding fauna exerted a negative influence on plant N uptake and biomass production. The impact of a trophic group on the microbes and plant was also strongly dependent on species composition within the group. Nitrogen addition magnified the influence of food web structure on microbial biomass and plant N uptake. We suggest that addition of urea-N to the soil modified the animal-microbe interaction by increasing microbial growth and altering community structure of microbes. The presence of microbi-detritivores and predators reduced loss of carbon from the microcosms, and the food web structure influenced also water holding capacity of the materials. The changes in plant growth, nutrient cycling, size of N and C pools, and in the physical properties of the soil emphasize the importance and diversity of indirect consequences of decomposer food web structure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The objectives of this study were to determine whether the invasive plant Amaranthus viridis influenced soil microbial and chemical properties and to assess the consequences of these modifications on native plant growth. The experiment was conducted in Senegal at two sites: one invaded by A. viridis and the other covered by other plant species. Soil nutrient contents as well as microbial community density, diversity and functions were measured. Additionally, five sahelian Acacia species were grown in (1) soil disinfected or not collected from both sites, (2) uninvaded soil exposed to an A. viridis plant aqueous extract and (3) soil collected from invaded and uninvaded sites and inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices . The results showed that the invasion of A. viridis increased soil nutrient availability, bacterial abundance and microbial activities. In contrast, AM fungi and rhizobial development and the growth of Acacia species were severely reduced in A. viridis -invaded soil. Amaranthus viridis aqueous extract also exhibited an inhibitory effect on rhizobial growth, indicating an antibacterial activity of this plant extract. However, the inoculation of G. intraradices was highly beneficial to the growth and nodulation of Acacia species. These results highlight the role of AM symbiosis in the processes involved in plant coexistence and in ecosystem management programs that target preservation of native plant diversity.  相似文献   

8.
9.
Aims Invasive plants commonly occupy disturbed soils, thereby providing a stage for understanding the role of disturbance-enhanced resources in plant invasions. Here, we addressed how soil space and soil nutrients affect the growth and competitive effect of invasive plants and whether this effect varies with different invaders.Methods We conducted an experiment in which two invasive plants (Bromus tectorum and Centaurea maculosa) and one native species (Poa pratensis) were grown alone or together in four habitats consisting of two levels of soil space and nutrients. At the end of the experiment, we determined the total biomass, biomass allocation and relative interaction intensity of B. tectorum, C. maculosa and P. pratensis .Important findings Across two invaders, B. tectorum and C. maculosa, increased soil nutrients had greater positive effects on their growth than increased soil space, the effects of soil space on root weight ratio were greater than those of soil nutrients, and their competitive effect decreased with soil space but increased with soil nutrients. These findings suggest that changing soil space and nutrients differentially influence the growth and competitive advantages of two invaders. Bromus tectorum benefited more from increased soil resources than C. maculosa. Soil space and nutrients affected the biomass allocation of C. maculosa but not B. tectorum. The competitive effect of B. tectorum was unaffected by soil space and soil nutrients, but the opposite was the case for C. maculosa. Thus, the effects of soil space and nutrients on growth and competitive ability depend on invasive species identity.  相似文献   

10.
1. The consequences to plants of ant–aphid mutualisms, particularly those involving invasive ants, are poorly studied. Ant–aphid mutualisms may increase or decrease plant fitness depending on the relative cost of herbivory by ant‐tended aphids versus the relative benefit of increased ant suppression of other (non‐aphid) herbivores. 2. We conducted field and greenhouse experiments in which we manipulated the presence and absence of cotton aphids (Aphis gossypii) on cotton plants to test the hypothesis that a mutualism between cotton aphids and an invasive ant, the red imported fire ant (Solenopsis invicta), benefits cotton plants by increasing fire ant suppression of caterpillars. We also manipulated caterpillar abundance to test whether the benefit of the mutualism varied with caterpillar density. 3. We found that more fire ants foraged on plants with cotton aphids than on plants without cotton aphids, which resulted in a significant reduction in caterpillar survival and caterpillar herbivory of leaves, flower buds, and bolls on plants with aphids. Consequently, cotton aphids indirectly increased cotton reproduction: plants with cotton aphids produced 16% more bolls, 25% more seeds, and 10% greater seedcotton mass than plants without aphids. The indirect benefit of cotton aphids, however, varied with caterpillar density: the number of bolls per plant at harvest was 32% greater on plants with aphids than on plants without aphids at high caterpillar density, versus just 3% greater at low caterpillar density. 4. Our results highlight the potential benefit to plants that host ant–hemipteran mutualisms and provide the first experimental evidence that the consequences to plants of an ant–aphid mutualism vary at different densities of non‐aphid herbivores.  相似文献   

11.
Invasive plants often pose great threats to the growth of co‐occurring native plant species. Identifying environmental factors that facilitate exotic plant invasion and native species decline are important. In this study, we measured the effects of plant volatile organic compounds (VOCs), light intensity, and their interactions on the growth and reproduction performance of indigenous Phytolacca acinosa, and invasive Phytolacca americana, which has largely replaced the former in China. VOCs of invasive P. americana and low light levels both had negative effects on P. acinosa morphological and reproductive traits (stem length, average leaf number, total number, and length of racemes), and biomass allocation (total biomass, and leaf and flower mass fraction); low light also affected photosynthesis‐related trait (specific leaf area) of P. acinosa. In contrast, VOCs of P. acinosa had no significant effect on P. americana, but low light levels adversely affected its morphological and reproductive traits (stem length, total number, and length of racemes) and biomass allocation (total biomass, stem, and leaf mass fraction). Interactions between plant VOCs and light intensity had no significant effects on P. acinosa or P. americana. Under all experimental treatments, stem length, average leaf area, total number, and length of racemes, Root/Shoot ratio, root and flower mass fraction of P. americana were higher than those of P. acinosa, while average leaf number, specific leaf area, and leaf mass fraction was lower. These results indicated that P. acinosa was sensitive to P. americana VOCs and low light, which might affect the growth of sympatric P. acinosa. P. americana was negatively influenced by low light, but higher plant height and more reproductive organ resource allocation relative to sympatric P. acinosa might contribute to invasion success.  相似文献   

12.
13.
Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human‐use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant–plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.  相似文献   

14.
15.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

16.
Increasing air temperature and atmospheric CO2 levels may affect the distribution of invasive species. Whereas there is wide knowledge on the effect of global change on temperate species, responses of tropical invasive species to these two global change drivers are largely unknown. We conducted a greenhouse experiment on Terminalia catappa L. (Combretaceae), an invasive tree species on Brazilian coastal areas, to evaluate the effects of increased air temperature and CO2 concentration on seed germination and seedling growth on the island of Santa Catarina (Florianópolis, Brazil). Seeds of the invasive tree were subjected to two temperature levels (ambient and +1.6 °C) and two CO2 levels (ambient and ~650 ppmv) with a factorial design. Increased temperature enhanced germination rate and shortened germination time of T. catappa seeds. It also increased plant height, number of leaves and above‐ground biomass. By contrast, increased atmospheric CO2 concentration had no significant effects, and the interaction between temperature and CO2 concentration did not affect any of the measured traits. Terminalia catappa adapts to a relatively broad range of environmental conditions, being able to tolerate cooler temperatures in its invasive range. As T. catappa is native to tropical areas, global warming might favour its establishment along the coast of subtropical South America, while increased CO2 levels seem not to have significant effects on seed germination or seedling growth.  相似文献   

17.
Genetic differences in growth of an invasive tree species   总被引:9,自引:0,他引:9  
Invasive plants are often more vigorous in their introduced ranges than in their native ranges. This may reflect an innate superiority of plants from some habitats or an escape from their enemies. Another hypothesis proposes that invasive plants evolve increased competitive ability in their introduced range. We present the results of a 14-year common garden experiment with the Chinese Tallow Tree ( Sapium sebiferum ) from its native range (Asia), place of introduction to North America (Georgia) and areas colonized a century later (Louisiana and Texas). Invasive genotypes, especially those from recently colonized areas, were larger than native genotypes and more likely to produce seeds but had lower quality, poorly defended leaves. Our results demonstrate significant post-invasion genetic differences in an invasive plant species. Post-introduction adaptation by introduced plants may contribute to their invasive success and make it difficult to predict problem species.  相似文献   

18.
植物生长调节剂通过克隆整合对空心莲子草顶端和基部生长的不同作用 入侵植物不仅对全球生物多样性造成了巨大的威胁,同时也严重影响了农业生产与粮食安全。克隆整合使得相连植株进行资源共享,能促进入侵植物的生长从而获得优势。然而,入侵杂草 在植物调节剂(plant growth regulators, PGRs)影响下的克隆整合作用则很少有报道。PGRs被广泛应用于 农作物生产上,并能通过土壤淋溶、侵蚀和径流作用,影响分布在作物附近的农田杂草的生长。本 研究采用两种PGRs赤霉素(gibberellins, GA)和多效唑(paclobutrazol,PAC)处理恶性入侵杂草空心莲子草 (Alternanthera philoxeroides)基端,并保持或者通过剪切达到控制基端与顶端的连通,从而探究克隆整合作用在空心莲子草响应两种农业常用PGRs中的作用。研究结果表明,GA和PAC对空心莲子草生长的作用相反。GA通过克隆整合作用显著促进顶端植株的地上生长。相反地,PAC显著抑制基端和顶端的地 上生长,但是能够通过克隆整合作用显著促进基端和顶端的地下生长。这些研究结果解释了克隆整合作用能促进PGRs对空心莲子草生长的促进作用,这很可能是外来杂草能够成功入侵人为干扰较多的农业生态系统的重要原因之一。  相似文献   

19.
外来植物入侵过程是入侵生态学研究的一个核心问题,被入侵生境中的各种要素对这一过程具有重要影响。为探讨入侵植物肿柄菊(Tithonia diversifolia)在种群和个体水平对不同生境的反应,调查了肿柄菊单优群落、肿柄菊与飞机草(Chromolaena odorata)共优群落和肿柄菊与紫茎泽兰(Ageratina adenophora)共优群落中肿柄菊的相对盖度、相对密度和高度,并开展了一个3因素(小气候、土壤类型和竞争)两水平的控制实验。结果表明:单优群落中,肿柄菊的相对盖度和相对密度显著大于其它两种群落中肿柄菊的相对盖度和相对密度;单优群落中肿柄菊的高度显著大于肿柄菊与紫茎泽兰共优群落中肿柄菊的高度,而与肿柄菊与飞机草共优群落中肿柄菊的高度无显著差异;肿柄菊的相对盖度、相对密度和高度在两个共优群落间无显著差异。小气候、土壤类型和竞争单个因素对肿柄菊的株高和叶片数没有显著影响,但三者的交互作用却显著影响肿柄菊的株高生长。这些结果表明:3个因素的综合作用影响肿柄菊的株高生长。  相似文献   

20.

Background and aims

Through recruitment, plants establish in novel environments. Recruitment also is the stage where plants undergo the highest mortality. We investigate the recruitment niche for Microstegium vimineum, an annual grass from East Asia spreading throughout eastern North American forests.

Methods

Current observational and greenhouse research indicates that M. vimineum recruitment may be inhibited by leaf litter and promoted by soil moisture; we use field studies to experimentally test how these factors influence M. vimineum germination, seedling survival and reproduction. Specifically, we introduce M. vimineum seeds into forest microhabitats with experimentally varied levels of soil moisture and leaf litter.

Results

Soil moisture increases M. vimineum germination regardless of leaf litter thickness and ameliorates seedling mortality in deep leaf litter. Seed production per m2 increases with watering, reflecting higher germination and survival, whereas per capita seed production increases with leaf litter thickness, reflecting density-dependent limits on seed production.

Conclusions

The interactive effects of varied levels of soil moisture and leaf litter thickness on key M. vimineum life history stages highlight the need to consider multiple drivers, such as rainfall and local forest disturbance, when assessing how soil properties influence the establishment of invasive plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号