首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Pantoea stewartii subsp. stewartii ( Pnss ) causes Stewart's bacterial wilt of sweet corn and leaf blight of maize. The pathogenicity of Pnss depends on synthesis of extracellular polysaccharide and an Hrp type III secretion system. WtsE, a type III secreted effector protein, is essential for the virulence of Pnss on corn. It belongs to the AvrE family of effectors, which includes DspA/E from Erwinia amylovora and AvrE1 from Pseudomonas syringae . Previously, WtsE was shown to cause disease-associated cell death in its host plant, sweet corn. Here, we examine the biological activity of WtsE in several non-host plants. WtsE induced cell death in Nicotiana benthamiana , tobacco, beet and Arabidopsis thaliana when it was transiently produced in plant cells following agroinfiltration or translocated into plant cells from Pnss , Escherichia coli or Pseudomonas syringae pv. phaseolicola ( Pph ). WtsE-induced cell death in N. benthamiana , tobacco and beet resembled a hypersensitive response and in N. benthamiana it was delayed by cycloheximide. Interestingly, WtsE strongly promoted the growth of Pnss in N. benthamiana prior to the onset of cell death. Deletion derivatives of WtsE that failed to induce cell death in N. benthamiana and tobacco also did not complement wtsE mutants of Pnss for virulence in sweet corn, indicating a correlation between the two activities. WtsE also induced cell death in A. thaliana , where it suppressed basal defences induced by Pph . Thus, WtsE has growth-promoting, defence-suppressing and cell death-inducing activities in non-host plants. Expression of WtsE also prevented the growth of yeast, possibly due to an innate toxicity to eukaryotic cells.  相似文献   

2.
Pantoea stewartii subsp. stewartii causes Stewart's wilt of sweet corn. A hypersensitive response and pathogenicity (Hrp) secretion system is needed to produce water-soaking and wilting symptoms in corn and to cause a hypersensitive response (HR) in tobacco. Sequencing of the hrp cluster revealed a putative harpin gene, hrpN. The product of this gene was overexpressed in Escherichia coli and shown to elicit the HR in tobacco and systemic resistance in radishes. The protein was designated HrpN(Pnss). Like other harpins, it was heat stable and protease sensitive, although it was three- to fourfold less active biologically than Erwinia amylovora harpin. We used antibodies to purified HrpN(Pnss) to verify that hrpN mutants could not produce harpin. This protein was secreted into the culture supernatant and was produced by strains of P. stewartii subsp. indologenes. In order to determine the importance of HrpN(Pnss) in pathogenesis on sweet corn, three hrpN::Tn5 mutants were compared with the wild-type strain with 50% effective dose, disease severity, response time, and growth rate in planta as parameters. In all tests, HrpN(Pnss) was not required for infection, growth, or virulence in corn or endophytic growth in related grasses.  相似文献   

3.
The hrp/wts gene cluster of Pantoea stewartii subsp. stewartii is required for pathogenicity on sweet corn and the ability to elicit a hypersensitive response (HR) in tobacco. Site-directed transposon mutagenesis and nucleotide sequencing were used to identify hrp/wts genes within the left 20 kb of this cluster. Seventeen open reading frames (ORFs) comprise seven genetic complementation groups. These ORFs share homology with hrp and dsp genes from Erwinia amylovora, Erwinia chrysanthemi, and Pseudomonas syringae pathovars and have been designated, in map order, wtsF, wtsE, hrpN, hrpV, hrpT, hrcC, hrpG, hrpF, hrpE, hrpD, hrcJ, hrpB, hrpA, hrpS, hrpY, hrpX, and hrpL. Putative hrp consensus promoter sequences were identified upstream of hrpA, hrpF, hrpN, and wtsE. Expression of the hrpA, hrpC, and wtsE operons was regulated by HrpS. Transposon mutations in all of the hrp operons abolished pathogenicity and HR elicitation, except for the hrpN and hrpV mutants, which were still pathogenic. hrpS, hrpXY, and hrpL regulatory mutations abolished HrpN synthesis, whereas secretory mutations in the hrpC, hrpA, and hrpJ operons permitted intracellular HrpN synthesis. wtsEF mutants were not pathogenic but still produced HrpN and elicited the HR. wtsE encodes a 201-kDa protein that is similar to DspE in E. amylovora and AvrE in P. syringae pv. tomato, suggesting that this protein is a major virulence factor involved in the elicitation of water-soaked lesions.  相似文献   

4.
5.
6.
Erwinia chrysanthemi is a host-promiscuous plant pathogen that possesses a type III secretion system (TTSS) similar to that of the host-specific pathogens E. amylovora and Pseudomonas syringae. The regions flanking the TTSS-encoding hrp/hrc gene clusters in the latter pathogens encode various TTSS-secreted proteins. DNA sequencing of the complete E. chrysanthemi hrp/hrc gene cluster and approximately 12 kb of the flanking regions (beyond the previously characterized hecA adhesin gene in the left flank) revealed that the E. chrysanthemi TTSS genes were syntenic and similar (>50% amino-acid identity) with their E. amylovora orthologs. However, the hrp/hrc cluster was interrupted by a cluster of four genes, only one of which, a homolog of lytic transglycosylases, is implicated in TTSS functions. Furthermore, the regions flanking the hrp/hrc cluster lacked genes that were likely to encode TTSS substrates. Instead, some of the genes in these regions predict ABC transporters and methyl-accepting chemotaxis proteins that could have alternative roles in virulence. Mutations affecting all of the genes in the regions flanking or interrupting the hrp/hrc cluster were constructed in E. chrysanthemi CUCPB5047, a mutant whose reduced pectolytic capacity can enhance the phenotype of minor virulence factors. Mutants were screened in witloof chicory leaves and then in potato tubers and Nicotiana clevelandii seedlings. Mu dII1734 insertion in one gene, designated virA, resulted in strongly reduced virulence in all three tests. virA is immediately downstream of hecA, has an unusually low G+C content of 38%, and predicts an unknown protein of 111 amino acids. The E. chrysanthemi TTSS was shown to be active by its ability to translocate AvrPto-Cya (a P. syringae TTSS effector fused to an adenylate cyclase reporter that is active in the presence of eukaryote calmodulin) into N. benthamiana leaf cells. However, VirA(1-61)-Cya was not translocated into plant cells, and virA expression was not affected by mutations in E. chrysanthemi Hrp regulator genes hrpL and hrpS. Thus, the 44-kb region of the E. chrysanthemi EC16 genome that is centered on the hrplhrc cluster encodes a potpourri of virulence factors, but none of these appear to be a TTSS effector.  相似文献   

7.
The virulence of soft-rot Erwinia species is dependent mainly upon secreted enzymes such as pectinases, pectin lyases, and proteases that cause maceration of plant tissue. Some soft-rot Erwinia spp. also harbor genes homologous to the hypersensitive reaction and pathogenesis (hrp) gene cluster, encoding components of the type III secretion system. The hrp genes are essential virulence determinants for numerous nonmacerating gram-negative plant pathogens but their role in the virulence of soft-rot Erwinia spp. is not clear. We isolated and characterized 11 hrp genes of Erwinia carotovora subsp. carotovora. Three putative sigmaL-dependent Hrp box promoter sequences were found. The genes were expressed when the bacteria were grown in Hrp-inducing medium. The operon structure of the hrp genes was determined by mRNA hybridization, and the results were in accordance with the location of the Hrp boxes. An E. carotovora strain with mutated hrcC, an essential hrp gene, was constructed. The hrcC- strain was able to multiply and cause disease in Arabidopsis, but the population kinetics were altered so that growth was delayed during the early stages of infection.  相似文献   

8.
Soft rot Erwinia spp., like other closely related plant pathogens, possess a type III secretion system (TTSS) (encoded by the hrp gene cluster) implicated in disease development. We report the sequence of the entire hrp gene cluster and adjacent dsp genes in Erwinia carotovora subsp. atroseptica SCRI1039. The cluster is similar in content and structural organization to that in E. amylovora. However, eight putative genes of unknown function located within the E. carotovora subsp. atroseptica cluster do not have homologues in the E. amylovora cluster. An arrayed set of Tn5 insertional mutants (mutation grid) was constructed and pooled to allow rapid isolation of mutants for any given gene by polymerase chain reaction screening. This novel approach was used to obtain mutations in two structural genes (hrcC and hrcV), the effector gene dspE/A, and the helper gene hrpN. An improved pathogenicity assay revealed that these mutations led to significantly reduced virulence, showing that both the putative E. carotovora subsp. atroseptica TTSS-delivered effector and helper proteins are required for potato infection.  相似文献   

9.
hrp genes of Erwinia chrysanthemi 3937 are important virulence factors   总被引:1,自引:0,他引:1  
We developed improved virulence assays for Erwinia chrysanthemi 3937 on African violet varieties and devised a new method for the construction of precise bacterial gene knockouts. These methods were tested by constructing mutations in genes suspected to be involved with plant interactions. The virulence of the hrpG and hrcC mutant strains (both gene products presumed to be involved in protein secretion) was greatly reduced on leaves of semitolerant African violet varieties. An hrpN mutant strain produced delayed symptoms on African violet leaves and an hrpN delta pel (delta pel = five major pectate lyase genes deleted) double mutant was nonpathogenic. The hrcC and hrpG mutants did not produce a rapid hypersensitive response (HR) in tobacco, unlike the wild-type bacterium, and the hrpN mutant gave a reduced HR. The results, therefore, establish the importance of hrp genes in the virulence of E. chrysanthemi and their ability to elicit HR on nonhosts. The data also suggest that other effector proteins secreted by the Hrp system are required for full virulence and HR elicitation.  相似文献   

10.
The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E. chrysanthemi EC16 with respect to the effects of medium composition and growth phase on gene expression (as determined with uidA fusions and Northern analyses) and effects on virulence. pelE was induced by polygalacturonic acid, but pelL was not, and hrpN was expressed unexpectedly in nutrient-rich King's medium B and in minimal salts medium at neutral pH. In contrast, the effect of medium composition on hrp expression in E. chrysanthemi CUCPB1237 and 3937 was like that of many other phytopathogenic bacteria in being repressed in complex media and induced in acidic pH minimal medium. Northern blot analysis of hrpN and hrpL expression by the wild-type and hrpL::omegaCmr and hrpS::omegaCmr mutants revealed that hrpN expression was dependent on the HrpL alternative sigma factor, whose expression, in turn, was dependent on the HrpS putative sigma54 enhancer binding protein. The expression of pelE and hrpN increased strongly in late logarithmic growth phase. To test the possible role of quorum sensing in this expression pattern, the expI/expR locus was cloned in Escherichia coli on the basis of its ability to direct production of acyl-homoserine lactone and then used to construct expI mutations in pelE::uidA, pelL::uidA, and hrpN::uidA Erwinia chrysanthemi strains. Mutation of expI had no apparent effect on the growth-phase-dependent expression of hrpN and pelE, or on the virulence of E. chrysanthemi in witloof chicory leaves. Overexpression of hrpN in E. chrysanthemi resulted in approximately 50% reduction of lesion size on chicory leaves without an effect on infection initiation.  相似文献   

11.
Pantoea stewartii subsp. stewartii, a xylem-dwelling bacterium, is the causal agent of Stewart's wilt and blight of sweet corn. The goal of this study was to characterize the only gene in the P. stewartii subsp. stewartii genome predicted to encode an endoglucanase (EGase); this gene was designated engY. Culture supernatants from P. stewartii subsp. stewartii and Escherichia coli expressing recombinant EngY protein possessed both EGase and xylanase activities. Deletion of engY abolished EGase and xylanase activity, demonstrating that EngY appears to be the major EGase or xylanase produced by P. stewartii subsp. stewartii. Most importantly, our results show that EngY contributes to movement in the xylem and disease severity during the wilting phase of Stewart's wilt but is not required for water-soaked lesion formation.  相似文献   

12.
Pantoea stewartii subsp. stewartii is a Gram-negative enteric bacterium that primarily infects sweet corn. Studies of this bacterium have provided useful insight into how xylem-dwelling bacteria establish themselves and incite disease in their hosts. Pantoea stewartii subsp. stewartii is a remarkable bacterial system for laboratory studies because of its relative ease of propagation and genetic manipulation, and the fact that it appears to employ a minimal number of pathogenicity mechanisms. In addition, P. stewartii subsp. stewartii produces copious amounts of its quorum sensing (QS) signal, acyl-homoserine lactone (AHL), making it an excellent organism for studying QS-controlled gene regulation in a plant-pathogenic bacterium. In fact, P. stewartii subsp. stewartii has become the microbial paradigm for QS control of gene expression by both repression and activation via a QS regulator that binds DNA in the absence and dissociates in the presence of the signal ligand. Moreover, P. stewartii subsp. stewartii is a member of the Enterobacteriaceae, and lessons learned from its interaction with plants may be extrapolated to other plant-associated enterics, such as Erwinia, Dickeya and Pectobacterium spp., or enteric human pathogens associated with plants, such as Escherichia coli and Salmonella spp. TAXONOMY: Bacteria; Gammaproteobacteria; family Enterobacteriaceae; genus Pantoea; species stewartii (Mergaert et al., 1993). MICROBIOLOGICAL PROPERTIES: Gram-negative, motile, yellow pigmented, mucoid, facultative anaerobe. HOST RANGE: Pantoea stewartii subsp. stewartii (Smith, 1898) Dye causes Stewart's wilt of corn (Zea mays). Early-maturing sweet corn varieties and some elite inbred maize lines are particularly susceptible. DISEASE SYMPTOMS: There are two major phases of Stewart's wilt disease: (i) wilt and (ii) leaf blight. The wilt phase occurs when young seedlings are infected with P. stewartii subsp. stewartii (Fig. 1A). Water-soaked lesions first appear on the young expanding leaves and, later, seedlings may become severely wilted (Fig. 1B). The plants usually die when infected at the seedling stage. The leaf blight phase occurs when mature plants are infected (Fig. 1C). The bacteria enter the xylem and cause long linear yellow-grey lesions with a wavy margin that run parallel to the leaf veins. These lesions later turn necrotic and dark in colour. The leaf blight phase is most apparent after tasselling and does not generally cause death of the plant. In addition, the bacteria can sometimes break out of the xylem and cause pith rot in mature sweet corn plants. In resistant varieties, lesions are usually limited to only a few centimetres depending on the level of resistance of the particular hybrid (Claflin, 2000; Pataky, 2003). USEFUL WEBSITES: http://www.apsnet.org/publications/apsnetfeatures/Pages/StewartsWilt.aspx.  相似文献   

13.
A PCR-coupled ligase chain reaction (LCR) assay was developed to distinguish the plant pathogenic bacterium Erwinia stewartii from other erwiniae. This new technique allows discrimination to the species level on the basis of a single-base-pair difference in the 16S rRNA gene which is unique to E. stewartii. Portions of the 16S rRNA genes of E. stewartii and the closely related Erwinia herbicola were sequenced. From comparison of the two 16S rRNA gene regions, two primer pairs were constructed such that only E. stewartii DNA gave a product in the LCR assay. The ligated product was separated from the radioactively labelled primers by denaturing polyacrylamide gel electrophoresis and visualized by autoradiography. Twenty-four different Erwinia species and strains were tested by PCR-coupled LCR to verify the specificity of the assay, and only E. stewartii strains gave a positive reaction. In addition, infected and healthy plant material was also assayed. E. stewartii was detected in infected plant material, even when large populations of epiphytic bacteria were present. No enrichment was necessary for detection of the pathogen in corn leaves. This assay has potential as a diagnostic technique for the detection of E. stewartii in infected plant and vector material.  相似文献   

14.
15.
16.
Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号