首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of potassium current in rabbit cultured Schwann cells   总被引:1,自引:0,他引:1  
Voltage-gated outward currents were studied in rabbit cultured Schwann cells with the 'whole-cell' configuration of the patch-clamp method. Four components of such currents were identified. The first, which was abolished by replacement of the external chloride ions by the large impermeant anion gluconate, was identified as a chloride current. The second and third were identified as potassium currents. One type of potassium current was reduced substantially by either 4-aminopyridine (4-AP) or tetraethylammonium ion (TEA). Its sensitivity to blocking by 4-AP was highly voltage-dependent: the equilibrium dissociation constant (K) was threefold greater when measured at +10 mV than when measured at -40 mV (where it was about 80 microM). The second type of potassium current was relatively insensitive to 4-AP, but was blocked by TEA. The TEA sensitivity of the two types of potassium currents was similar and displayed no obvious voltage-dependence (K approximately 200 microM). The fourth component of current was not reduced by 4-AP or TEA at concentrations less than 10 mM. Whether or not this last component is a potassium current is unclear.  相似文献   

2.
3.
Ionic currents underlying the action potential of Rana pipiens oocytes   总被引:1,自引:0,他引:1  
Ionic currents in immature, ovulated Rana pipiens oocytes (metaphase I) were studied using the voltage-clamp technique. At this stage of maturity the oocyte can produce action potentials in response to depolarizing current or as an "off response" to hyperpolarizing current. Reducing external Na+ to 1/10 normal (choline substituted) eliminated the action potentials and both the negative-slope region and zero-crossing of the I-V relation. Reducing external Cl- to 1/10 or 1/100 normal (methanesulfonate substituted) lengthened the action potential. The outward current was reduced and a net inward current was revealed. By changing external Na+, Cl-, and K+ concentrations and using blocking agents (SITS, TEA), three voltage- and time-dependent currents were identified, INa, IK and ICl. The Na+ current activated at about 0 mV and reversed at very positive values which decreased during maturation. Inward Na+ current produced the upstroke of the action potential. During each voltage-clamp step the Na+ current activated slowly (seconds) and did not inactivate within many minutes. The Na+ current was not blocked by TTX at micromolar concentrations. The K+ current was present only in the youngest oocytes. Because IK was superimposed on a large leakage current, it appeared to reverse at the resting potential. When leakage currents were subtracted, the reversal potential for IK was more negative than -110 mV in Ringer's solution. IK was outwardly rectifying and strongly activated above -50 mV. The outward K+ current produced an after hyperpolarization at the end of each action potential. IK was blocked completely and reversibly by 20 mM external TEA. The Cl- current activated at about +10 mV and was outwardly rectifying. ICl was blocked completely and reversibly by 400 microM SITS added to the bathing medium. This current helped repolarize the membrane following an action potential in the youngest oocytes and was the only repolarizing current in more mature oocytes that had lost IK. The total leakage current had an apparently linear I-V relation and was separated into two components: a Na+ current (IN) and a smaller component carried by as yet unidentified ions.  相似文献   

4.
beta-Adrenergic stimulation of ventricular heart cells results in the enhancement of two important ion currents that regulate the plateau phase of the action potential: the delayed rectifier potassium channel current (IK) and L-type calcium channel current (ICa). The temperature dependence of beta-adrenergic modulation of these two currents was examined in patch-clamped guinea pig ventricular myocytes at various steps in the beta-receptor/cyclic AMP-dependent protein kinase pathway. External applications of isoproterenol and forskolin were used to activate the beta-receptor and the enzyme adenylate cyclase, respectively. Internal dialysis of cyclic 3',5'-adenosine monophosphate (cAMP) or the catalytic subunit of cAMP-dependent protein kinase (CS), as well as the external addition of 8-chlorphenylthio cAMP (CPT-cAMP) was applied to increase intracellular levels of cAMP and CS. Isoproterenol-mediated increases in IK, but not ICa, were found to be very temperature dependent over the range of 20-37 degrees C. At room temperature (20-22 degrees C) isoproterenol produced a large (threefold) enhancement of ICa but had no effect on IK. In contrast, at warmer temperatures (30-37 degrees C) both currents increased in the presence of this agonist and the kinetics of IK were slowed at -30 mV. A similar temperature sensitivity also existed after exposure to forskolin, CPT-cAMP, cAMP, and CS, suggesting that this temperature sensitivity of IK may arise at the channel protein level. Modulation of IK during each of these interventions was accompanied by a slowing in IK kinetics. Thus, regulation of cardiac potassium channels but not calcium channels involves a temperature-dependent step that occurs after activation of the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

5.
Basal retinal neurons of the marine mollusc Bulla gouldiana continue to express a circadian modulation of their membrane conductance for at least two cycles in cell culture. Voltage-dependent currents of these pacemaker cells were recorded using the whole-cell perforated patch-clamp technique to characterize outward currents and investigate their putative circadian modulation. Three components of the outward potassium current were identified. A transient outward current (IA) was activated after depolarization from holding potentials greater than -30 mV, inactivated with a time constant of 50 ms, and partially blocked by 4-aminopyridine (1-5 mM). A Ca(2+)-dependent potassium current (IK(Ca)) was activated by depolarization to potentials more positive than -10 mV and was blocked by removing Ca2+ from the bath or by applying the Ca2+ channel blockers Cd2+ (0.1-0.2 mM) and Ni2+ (1-5 mM). A sustained Ca(2+)-independent current component including the delayed rectifier current (IK) was recorded at potentials positive to -20 mV in the absence of extracellular Na+ and Ca2+ and was partially blocked by tetraethylammonium chloride (TEA, 30mM). Whole-cell currents recorded before and after the projected dawn and normalized to the cell capacitance revealed a circadian modulation of the delayed rectifier current (IK). However, the IA and IK(Ca) currents were not affected by the circadian pacemaker.  相似文献   

6.
胆固醇普遍存在于细胞膜中,其含量在细胞增殖、生长及各种疾病条件下会发生改变,这暗示胆固醇对细胞功能的调节起着重要的作用。运用全细胞膜片钳技术研究了胆固醇含量变化对海马神经细胞电压依赖钾电流的影响。实验观察到神经细胞经胆固醇去除剂β-甲基环化糊精(MβCD)处理后,胆固醇含量的减少促进了延迟整流钾电流IK的增加,且延缓了瞬间失活钾电流IA的失活。更进一步,延迟整流钾电流IK和瞬间失活钾电流IA分别经TEA和4-AP阻断后,MβCD对两种电流成分的影响显著降低。这一结果进一步表明胆固醇去除剂对电压依赖钾电流的上调是通过作用于IK和IA电流而共同实现的。基于电压依赖钾通道在神经细胞功能中的重要作用,实验结果暗示神经细胞胆固醇含量变化可对神经细胞的兴奋性起调节作用。  相似文献   

7.
8.
用双微电极电压钳技术在巨孔匙(虫戚)(Megathura)未受精卵细胞膜上记录到多种离子流。主要有一种内向的两价离子流和几种钾离子流:包括钡离子激活的钾离子流,迅速激活又迅速失活的钾离子流(类似于I_A)和异常整流钾离子流。不同细胞的离子流大小不同。在一些卵可能会缺少其中某一种离子流。此外,还观察到浴槽溶液中氯和钠离子浓度改变对膜电位及膜电导的影响。  相似文献   

9.
The interaction of internal anions with the delayed rectifier potassium channel was studied in perfused squid axons. Changing the internal potassium salt from K+ glutamate- to KF produced a reversible decline of outward K currents and a marked slowing of the activation of K channels at all voltages. Fluoride ions exert a differential effect upon K channel gating kinetics whereby activation of IK during depolarizing steps is slowed dramatically, but the rate of closing after the step is not much altered. These effects develop with a slow time course (30-60 min) and are specific for K channels over Na channels. Both the amplitude and activation rate of IK were restored within seconds upon return to internal glutamate solutions. The fluoride effect is independent of the external K+ concentration and test membrane potential, and does not recover with repetitive application of depolarizing voltage steps. Of 11 different anions tested, all inorganic species induced similar decreases and slowing of IK, while K currents were maintained during extended perfusion with several organic anions. Anions do not alter the reversal potential or shape of the instantaneous current-voltage relation of open K channels. The effect of prolonged exposure to internal fluoride could be partially reversed by the addition of cationic K channel blocking agents such as TEA+, 4-AP+, and Cs+. The competitive antagonism between inorganic anions and internal cationic K channel blockers suggests that they may interact at a related site(s). These results indicate that inorganic anions modify part of the K channel gating mechanism (activation) at a locus near the inner channel surface.  相似文献   

10.
Extracellular tetraethylammonium (TEA) inhibits currents in Xenopus oocytes that have been injected with mRNAs encoding voltage-dependent potassium channels. Concentration-response curves were used to measure the affinity of TEA; this differed up to 700-fold among channels RBK1 (KD 0.3 mM), RGK5 (KD 11 mM), and RBK2 (KD greater than 200 mM). Studies in which chimeric channels were expressed localized TEA binding to the putative extracellular loop between trans-membrane domains S5 and S6. Site-directed mutagenesis of residues in this region identified the residue Tyr379 of RBK1 as a crucial determinant of TEA sensitivity; substitution of Tyr in the equivalent positions of RBK2 (Val381) and RGK5 (His401) made these channels as sensitive to TEA as RBK1. Nonionic forces are involved in TEA binding because (i) substitution of the Phe for Tyr379 in RBK1 increased its affinity, (ii) protonation of His401 in RGK5 selectively reduced its affinity, and (iii) the affinity of TEA was unaffected by changes in ionic strength. The results suggest an explanation for the marked differences in TEA sensitivity that have been observed among naturally occurring and cloned potassium channels and indicate that the amino acid corresponding to residue 379 in RBK1 lies within the external mouth of the ion channel.  相似文献   

11.
Blocking of potassium channels by internally and externally applied barium ions has been studied in squid giant axons. Internal Ba (3-5 mM) causes rapid decay or "inactivation" of potassium current (IK). The kinetics and degree of block are strongly voltage-dependent. Large positive voltages speed blocking and make it more profound. Raising the external potassium concentration (Ko) from 0 to 250 mM has the opposite effect: block is made slower and less severe. In contrast, for positive voltages block by the tetraethylammonium derivative 3-phenylpropyltriethylammonium ion is almost independent of Ko and voltage. Recovery from block by internal Ba has a rapid phase lasting a few milliseconds and a slow phase lasting approximately 5 min. Internal Ba causes a "hook" in the IK tails recorded on repolarizing the fiber in high potassium external medium. External Ba, on the other hand, blocks without much altering IK time-course. KD (the dissociation constant) for block by external Ba is a few millimolar, and depends on the internal potassium concentration, the holding potential, and other factors. A reaction scheme for Ba and K channels is presented, postulating that internal and external Ba reach the same point in the channel. Once there, Ba blocks and also stabilizes the closed conformation of the channel. The extreme stability of the Ba channel complex implies the existence of negative charge within the channel.  相似文献   

12.
The pharmacological profile of a voltage-independent Ca2+-activated potassium channel of intermediate conductance (IK(Ca2+)) present in bovine aortic endothelial cells (BAEC) was investigated in a series of inside-out and outside-out patch-clamp experiments. Channel inhibition was observed in response to external application of ChTX with a half inhibition concentration of 3.3 ± 0.3 nm (n= 4). This channel was insensitive to IbTX, but channel block was detected following external application of MgTX and StK leading to the rank order toxin potency ChTX > StK > MgTX >>IbTX. A reduction of the channel unitary current amplitude was also measured in the presence of external TEA, with half reduction occurring at 23 ± 3 mm TEA (n= 3). The effect of TEA was voltage insensitive, an indication that TEA may bind to a site located on external side of the pore region of this channel. Similarly, the addition of d-TC to the external medium caused a reduction of the channel unitary current amplitude with half reduction at 4.4 ± 0.3 mm (n= 4). In contrast, application of d-TC to the bathing medium in inside-out experiments led to the appearance of long silent periods, typical of a slow blocking process. Finally, the IK(Ca2+) in BAEC was found to be inhibited by NS1619, an activator of the Ca2+-activated potassium channel of large conductance (Maxi K(Ca2+)), with a half inhibition value of 11 ± 0.8 μm (n= 4). These results provide evidence for a pharmacological profile distinct from that reported for the Maxi K(Ca2+) channel, with some features attributed to the voltage-gated KV1.2 potassium channel. Received: 6 November 1997/Revised: 19 February 1998  相似文献   

13.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

14.
Electrical properties of the plasma membrane of guard cell protoplasts isolated from stomates of Vicia faba leaves were studied by application of the whole-cell configuration of the patch-clamp technique. The two types of K+ currents that have recently been identified in guard cells may allow efflux of K+ during stomatal closing, and uptake of K+ during stomatal opening (Schroeder et al., 1987). A detailed characterization of ion transport properties of the inward-rectifying (IK+,in) and the outward-rectifying (IK+,out) K+ conductance is presented here. The permeability ratios of IK+,in and IK+,out currents for K+ over monovalent alkali metal ions were determined. The resulting permeability sequences (PK+ greater than PRb+ greater than PNa+ greater than PLi+ much greater than PCs+) corresponded closely to the ion specificity of guard cell movements in V. faba. Neither K+ currents exhibited significant inactivation when K+ channels were activated for prolonged periods (greater than 10 min). The absence of inactivation may permit long durations of K+ fluxes, which occur during guard cell movements. Activation potentials of inward K+ currents were not shifted when external K+ concentrations were changed. This differs strongly from the behavior of inward-rectifying K+ channels in animal tissue. Blue light and fusicoccin induce hyperpolarization by stimulation of an electrogenic pump. From slow-whole-cell recordings it was concluded that electrogenic pumps require cytoplasmic substrates for full activation and that the magnitude of the pump current is sufficient to drive K+ uptake through IK+,in channels. First, direct evidence was gained for the hypothesis that IK+,in channels are a molecular pathway for K+ accumulation by the finding that IK+,in was blocked by Al3+ ions, which are known to inhibit stomatal opening but not closing. The results presented in this study strongly support a prominent role for IK+,in and IK+,out channels in K+ transport across the plasma membrane of guard cells.  相似文献   

15.
Thellungiella halophila is a salt-tolerant relative of Arabidopsis thaliana with high genetic and morphological similarity. In a saline environment, T. halophila accumulates less sodium and retains more potassium than A. thaliana. Detailed electrophysiological comparison of ion currents in roots of both species showed that, unlike A. thaliana, T. halophila exhibits high potassium/sodium selectivity of the instantaneous current. This current differs in its pharmacological profile from the current through inward- and outward-rectifying K(+) channels insofar as it is insensitive to Cs(+) and TEA(+), but resembles voltage-independent channels of glycophytes as it is inhibited by external Ca(2+). Addition of Cs(+) and TEA(+) to the growth medium confirmed the key role of the instantaneous current in whole-plant sodium accumulation. A negative shift in the reversal potential of the instantaneous current under high-salt conditions was essential for decreasing sodium influx to twofold lower than the corresponding value in A. thaliana. The lower overall sodium permeability of the T. halophila root plasma membrane resulted in a smaller membrane depolarization during salt exposure, thus allowing the cells to maintain their driving force for potassium uptake. Our data provide quantitative evidence that specific features of ion channels lead to superior sodium/potassium homeostasis in a halophyte compared with a closely related glycophyte.  相似文献   

16.
去甲肾上腺素对大鼠肝细胞延迟外向钾电流的影响   总被引:1,自引:0,他引:1  
Cui GY  Li JM  Liu DJ  Cui H 《生理学报》1998,50(2):232-236
目前为止国内外尚未见到有关大鼠肝细胞外向钾电流方面的报道。本文用全细胞膜片宿制技术观察了大鼠肝细胞延迟外向钾电流(Ik)及去甲肾上腺素等对人的影响。实验结果表明,在保持电位-50mV、指令电位+140mV时大鼠肝细胞Ik为2.85±1.21nA。去甲肾上腺素明显降低IK,异丙肾上腺素和乙酰胆碱对IK无影响。  相似文献   

17.
The electrophysiological properties of voltage dependent potassium channels from freshly dissociated rat articular chondrocytes were studied. The resting membrane potential (-42.7+/-2.0 mV) was significantly depolarized by increasing concentrations of external potassium. No change was observed when external chloride concentration was varied. Addition of TEA, 4AP, alpha-Dendrotoxin and charybdotoxin depolarized resting membrane potential. Whole cell patch clamp studies revealed the presence of outwardly rectifying currents whose kinetic and pharmacological properties suggest the expression of voltage dependent potassium channels. Two kinds of currents were observed under the same experimental conditions. The first one, most frequently observed (80%), starts activating near -50 mV, with V(1/2)=-18 mV, G(max)=0.30 pS/pF. The second kind was observed in only 10% of cases; It activates near -40 mV, with(1/2)=+28.35 mV, G(max)=0.28 pS/pF pA/pF and does not inactivates. Inactivating currents were significantly inhibited by TEA (IC(50)=1.45 mM), 4AP (IC(50)=0.64 mM), CTX (IC(50) = 10 nM), alpha-Dendrotoxin (IC(50) < 100 nM) and Margatoxin (IC(50)=28.5 nM). These results show that rat chondrocytes express voltage dependent potassium currents and suggest a role of voltage-dependent potassium channels in regulating membrane potential of rat chondrocytes.  相似文献   

18.
In the experiments here, the time- and voltage-dependent properties of the Ca2+-independent, depolarization-activated K+ currents in adult mouse ventricular myocytes were characterized in detail. In the majority (65 of 72, approximately 90%) of cells dispersed from the ventricles, analysis of the decay phases of the outward currents revealed three distinct K+ current components: a rapidly inactivating, transient outward K+ current, Ito,f (mean +/- SEM taudecay = 85 +/- 2 ms); a slowly (mean +/- SEM taudecay = 1,162 +/- 29 ms) inactivating K+ current, IK,slow; and a non inactivating, steady state current, Iss. In a small subset (7 of 72, approximately 10%) of cells, Ito,f was absent and a slowly inactivating (mean +/- SEM taudecay = 196 +/- 7 ms) transient outward current, referred to as Ito,s, was identified; the densities and properties of IK,slow and Iss in Ito,s-expressing cells are indistinguishable from the corresponding currents in cells with Ito,f. Microdissection techniques were used to remove tissue pieces from the left ventricular apex and from the ventricular septum to allow the hypothesis that there are regional differences in Ito,f and Ito,s expression to be tested directly. Electrophysiological recordings revealed that all cells isolated from the apex express Ito,f (n = 35); Ito,s is not detected in these cells (n = 35). In the septum, by contrast, all of the cells express Ito,s (n = 28) and in the majority (22 of 28, 80%) of cells, Ito,f is also present. The density of Ito,f (mean +/- SEM at +40 mV = 6.8 +/- 0.5 pA/pF, n = 22) in septum cells, however, is significantly (P < 0.001) lower than Ito,f density in cells from the apex (mean +/- SEM at +40 mV = 34.6 +/- 2.6 pA/pF, n = 35). In addition to differences in inactivation kinetics, Ito,f, Ito,s, and IK,slow display distinct rates of recovery (from inactivation), as well as differential sensitivities to 4-aminopyridine (4-AP), tetraethylammonium (TEA), and Heteropoda toxin-3. IK,slow, for example, is blocked selectively by low (10-50 microM) concentrations of 4-AP and by (>/=25 mM) TEA. Although both Ito,f and Ito,s are blocked by high (>100 microM) 4-AP concentrations and are relatively insensitive to TEA, Ito,f is selectively blocked by nanomolar concentrations of Heteropoda toxin-3, and Ito,s (as well as IK,slow and Iss) is unaffected. Iss is partially blocked by high concentrations of 4-AP or TEA. The functional implications of the distinct properties and expression patterns of Ito,f and Ito,s, as well as the likely molecular correlates of these (and the IK,slow and Iss) currents, are discussed.  相似文献   

19.
The effects of gallamine on ionic currents in single intact Ranvier nodes of the toad Xenopus were investigated. The following fully reversible effects were observed: 1. With a test concentration of 1 mmol/l the current-voltage relation of steady-state potassium currents, IK ss exhibited a complete block of IK ss up to about V = 110 mV; with stronger depolarisations the block was incomplete. The peak sodium currents, in contrast, were not affected. 2. At the same test concentration the potassium permeability constant PK was reduced by 92% from its normal value, while the sodium permeability constant PNa decreased by only 8%. 3. Concentration-response relations of the block of PK yielded an apparent dissociation constant of 30 micromol/l and a steepness parameter of unity. Patch-clamp experiments on cloned Kv1.1, Kv1.2, Kv1.3 and Kv3.1 channels yielded apparent dissociation constants of 86, 19, >100 and 121 micromol/l, respectively. Our findings show that gallamine is particularly well suited for separating potassium and sodium currents in axonal current ensembles. They also strongly suggest that potassium currents in Ranvier nodes of Xenopus are mainly carried by an ensemble of Kv1.1 and 1.2 channels.  相似文献   

20.
Quaternary ammonium ions were applied to the inside of single myelinated nerve fibers by diffusion from a cut end. The resulting block of potassium channels in the node of Ranvier was studied under voltage-clamp conditions. The results agree in almost all respects with similar studies by Armstrong of squid giant axons. With tetraethylammonium ion (TEA), pentyltriethylammonium ion (C5), or nonyltriethylammonium ion (C9) inside the node, potassium current during a depolarization begins to rise at the normal rate, reaches a peak, and then falls again. This unusual inactivation is more complete with C9 than with TEA. Larger depolarizations give more block. Thus the block of potassium channels grows with time and voltage during a depolarization. The block reverses with repolarization, but for C9 full reversal takes seconds at -75 mv. The reversal is faster in 120 mM KCl Ringer''s and slower during a hyperpolarization to -125 mv. All of these effects contrast with the time and voltage-independent block of potassium, channels seen with external quaternary ammonium ions on the node of Ranvier. External TEA, C5, and C9 block without inactivation. The external quaternary ammonium ion receptor appears to be distinct from the inner one. Apparently the inner quaternary ammonium ion receptor can be reached only when the activation gate for potassium channels is open. We suggest that the inner receptor lies within the channel and that the channel is a pore with its activation gate near the axoplasmic end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号