首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
During growth of Methanosarcina barkeri strain Fusaro on a mixture of trimethylamine and acetate, methane production and acetate consumption were biphasic. In the first phase trimethylamine (33 mmol x l-1) was depleted and some acetate (11–14 from 50 mmol x l-1) was metabolized simultaneously. In the second phase the remaining acetate was cleaved stoichiometrically into CH4 and CO2. Kinetic experiments with (2-14C)acetate revealed that only 2.5% of the methane produced in the first phase originated from acetate: 18% of the acetate metabolized was cleaved into CH4 and CO2, 23% of the acetate was oxidized, and 55% was assimilated. Methane produced from CD3–COOH in the first phase consisted of CD2H2 and CD3H in a ratio of 1:1.  相似文献   

2.
Abstract Washed invested vesicle preparations of Methanosarcina strain Gö1 catalyzed the formation of methyl-CoM from formaldehyde, H2 and CoM in the presence of tetrahydromethanopterin and 2-bromoethanesulfonate. The reaction was associated with the translocation of sodium ions into the lumen of the vesicles. This translocation was abolished by the Na+ ionophore ETH 157 but it was insensitive to the addition of the uncoupler SF6847 and the Na+/H+ antiport inhibitor amiloride and, therefore, is the result of a primary Na+ pump. Since the translocation of Na+ was also observed when formaldehyde + tetrahydromethanopterin was replaced by methyl-tetrahydromethanopterin, it follows that the methyl transfer from tetrahydromethanopterin to CoM is the sodium-motive reaction. Methyl-tetrahydromethanopterin could be replaced by methyl-tetrahydrofolate.  相似文献   

3.
Methanosarcina barkeri was recently shown to contain two cytoplasmic isoenzymes of methylcobalamin: coenzyme M methyltransferase (methyltransferase 2). Isoenzyme I predominated in methanol-grown cells and isoenzyme II in acetate-grown cells. It was therefore suggested that isoenzyme I functions in methanogenesis from methanol and isoenzyme II in methanogenesis from acetate. We report here that cells of M. barkeri grown on trimethylamine, H2/CO2, or acetate contain mainly isoenzyme II. These cells were found to have in common that they can catalyze the formation of methane from trimethylamine and H2, whereas only acetate-grown cells can mediate the formation of methane from acetate. Methanol-grown cells, which contained only low concentrations of isoenzyme II, were unable to mediate the formation of methane from both trimethylamine and acetate. These and other results suggest that isoenzyme II (i) is employed for methane formation from trimethylamine rather than from acetate, (ii) is constitutively expressed rather than trimethylamine-induced, and (iii) is repressed by methanol. The constitutive expression of isoenzyme II in acetate-grown M. barkeri can explain its presence in these cells. The N-terminal amino acid sequences of isoenzyme I and isoenzyme II were analyzed and found to be only 55% similar.Abbreviations H-S-CoM coenzyme M or 2-mercaptoethane-sulfonate - CH3-S-CoM methyl-coenzyme M or 2(methylthio)-ethanesulfonate - [Co] cobalamin - CH3-[Co] methylcobalamin - H4MPT tetrahydromethanopterin - CH3-H4MPT N 5-methyltetrahydromethanopterin - MT1 methyltransferase 1 or methanol: 5-hydroxybenzimidazolyl cobamide methyltransferase - MT2 methyltransferase 2 or methylcobalamin: coenzyme M methyltransferase - Mops morpholinopropanesulfonate - 1 U = 1 mol/min  相似文献   

4.
Neither muramic acid and glucosamine nor d-glutamic acid or other amino acids typical of peptidoglycan were found in cell walls of two strains of Methanosarcina barkeri. The main components are galactosamine, neutral sugars and uronic acids. Therefore, the structural component of the cell wall most likely consists of an acid heteropolysaccharide, resembling that of Halococcus morrhuae. It is, however, not sulfated.  相似文献   

5.
Effect of redox potential on methanogenesis by Methanosarcina barkeri   总被引:1,自引:0,他引:1  
Concentrations of 0.5% O2 immediately inhibited CH4 production from methanol by Methanosarcina barkeri. Simultaneously, the redox potential of the medium increased to about +100 mV. However, the rates of CH4 production were not significantly affected, when the redox potential of an anoxic medium was adjusted to values between -420 mV and +100 mV by addition of titanium (III) citrate, sodium dithionite, flavin adenine dinucleotide, or sodium ascorbate. When the redox potential was adjusted to values between -80 mV and +550 mV by means of mixtures of ferrocyanide and ferricyanide, CH4 production was not inhibited until a redox potential of about +420 mV was reached. M. barkeri was able to reduce 0.5 mM ferricyanide solution at +430 mV within <30 min to a value of about +50 mV, and then to start CH4 production. Higher ferricyanide concentrations were only partially reduced. The extent of reduction of ferricyanide was also dependent on the substrate concentration (methanol) and the density of the bacterial suspension. The results show that M. barkeri was able to generate to a certain extent by itself the redox environment which suited the production of CH4. However, the bacteria probably have not enough reducing power to decrease the redox potential below the critical level of +50 mV, if O2 is present at concentrations >0.005%.  相似文献   

6.
The conversion of methyl-tetrahydromethanopterin to methylcoenzyme M inMethanosarcina barkeri is catalyzed by two enzymes: an enzyme with a bound corrinoid, which becomes methylated during the reaction and an enzyme which tranfers the methyl group from this corrinoid to coenzyme M. As in the similar methyltransfer reaction inMethanobacterium thermoautotrophicum the corrinoid enzyme inM. barkeri needs to be activated by H2 and ATP. ATP can be replaced by Ti(III)citrate or CO.  相似文献   

7.
8.
Cell extracts of Methanosarcina barkeri grown on methanol in media supplemented with molybdate exhibited a specific activity of formylmethanofuran dehydrogenase of approximately 1 U (1 mol/min)/mg protein. When the growth medium was supplemented with tungstate rather than with molybdate, the specific activity was only 0.04 U/mg. Despite this reduction in specific activity growth on methanol was not inhibited. An inhibition of both growth and synthesis of active formylmethanofuran dehydrogenase was observed, however, when H2 and CO2 were the energy substrates. The results indicate that, in contrast to Methanobacterium wolfei and Methanobacterium thermoautotrophicum, M. barkeri possesses only a molybdenum containing formylmethanofuran dehydrogenase and not in addition a tungsten isoenzyme.  相似文献   

9.
The conversion of trimethylamine to methane, carbon dioxide and ammonia as catalyzed by cell suspensions of Methanosarcina barkeri was coupled to the generation of a protonmotive force and to the synthesis of ATP. Methanogenesis as well as ATP formation and protonmotive force generation was abolished by the uncoupler tetrachloro-salicylanilide (TCS). Inhibition of methane formation was reversed by addition of formaldehyde, which was predominantly oxidized to carbon dioxide, whereas trimethylamine was predominantly reduced to methane and ammonia under these conditions. Cell extracts of M. barkeri were unable to convert trimethylamine to methane, carbon dioxide and ammonia independent from the presence or absence of ATP.  相似文献   

10.
Cell extracts (100,000×g) of acetate grown Methanosarcina barkeri (strain MS) catalyzed CH4 and CO2 formation from acetyl-CoA with specific activities of 50 nmol·min-1·mg protein-1. CH4 formation was found to be dependent on tetrahydromethanopterin (H4MPT) (apparent K M=4 μM), coenzyme M (H-S-CoM), and 7-mercaptoheptanoylthreonine phosphate (H-S-HTP=component B) rather than on methanofuran (MFR) and coenzyme F420 (F420). Methyl-H4MPT was identified as an intermediate. This compound accumulated when H-S-CoM and H-S-HTP were omitted from the assays. These and previous results indicate that methanogenesis from acetate proceeds via acetyl phosphate, acetyl-CoA, methyl-H4MPT, and CH3-S-CoM as intermediates. The disproportionation of formaldehyde to CO2 and CH4 was also studied. This reaction was shown to be dependent on H4MPT, MFR, F420, H-S-CoM, and H-S-HTP.  相似文献   

11.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   

12.
Hydrogenase was solubilized from the membrane of acetate-grown Methanosarcina barkeri MS and purification was carried out under aerobic conditions. The enzyme was reactivated under reducing conditions in the presence of H2. The enzyme showed a maximal activity of 120±40 mol H2 oxidized · min–1 · min–1 with methyl viologen as an electron acceptor, a maximal hydrogen production rate of 45±4 mol H2 · min–1 · mg–1 with methyl viologen as electron donor, and an apparent K m for hydrogen oxidation of 5.6±1.7 M. The molecular weight estimated by gel filtration was 98,000. SDS-PAGE showed the enzyme to consist of two polypeptides of 57,000 and 35,000 present in a 1:1 ratio. The native protein contained 8±2 mol Fe, 8±2 mol S2–, and 0.5 mol Ni/mol enzyme. Cytochrome b was reduced by hydrogen in a solubilized membrane preparation. The hydrogenase did not couple with autologous F420 or ferredoxin, nor with FAD, FMN, or NAD(P)+. The physiological function of the membrane-bound hydrogenase in hydrogen consumption is discussed.Abbreviation CoM-S-S-HTP the heterodisulfide of 7-mercaptoheptanoylthrconine phosphate and coenzyme M (mercaptoethanesulfonic acid)  相似文献   

13.
The dehydrogenation of N 5,N 10-methylenetetrahydromethanopterin (CH2=H4MPT) to N 5,N 10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentrations were linear: the apparent K m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum.  相似文献   

14.
Acetate-grown cells of Methanosarcina barkeri MS were found to form methane from H2:CO2 at the same rate as hydrogen-grown cells. Cells grown on acetate had similar levels of soluble F420-reactive hydrogenase I, and higher levels of cytochrome-linked hydrogenase II compared to hydrogen-grown cells. The hydrogenase I and II activities in the crude extract of acetate-grown cells were separated by differential binding properties to an immobilized Cu2+ column. Hydrogenase II did not react with ferredoxin or F420, whereas hydrogenase I coupled to both ferredoxin and F420. A reconstituted soluble protein system composed of purified CO dehydrogenase, F420-reactive hydrogenase I fraction, and ferredoxin produced H2 from CO oxidation at a rate of 2.5 nmol/min · mg protein. Membrane-bound hydrogenase II coupled H2 consumption to the reduction of CoM-S-S-HTP and the synthesis of ATP. The differential function of hydrogenase I and II is ascribed to ferredoxin-linked hydrogen production from CO and cytochrome b-linked H2 consumption coupled to methanogenesis and ATP synthesis, respectively.  相似文献   

15.
Methane formation from acetate in cell suspensions of Methanosarcina barkeri was inhibited by low concentrations (5 M) of propyl iodide. Inhibition was abolished by short exposure of the suspension to light which strongly indicates that a corrinoid enzyme is involved in methanogenesis from acetate. Propyl iodide (5M) had no effect on the exchange reaction between the carboxyl group of acetate and 14CO2, and on methane formation from methanol, from H2 and methanol, or from H2 and CO2. These findings indicate that the proposed corrinoid enzyme has a role in methyl group transfer to coenzyme M after C-C cleavage of acetate.Dedicated to Professor N. Pfennig on the occasion of his 60th birthday  相似文献   

16.
Methanosarcina barkeri strain 227 produced ethane during growth on H2/CO2 when ethanol was added to the medium in concentrations of 89–974 mM; ethane production varied from 14 to 38 nmoles per tube (20 ml gas phase, 5.7 ml liquid) with increasing ethanol concentrations. Cells grown to mid-logarithmic phase (A600 0.46, protein = 64 g/ml) on H2/CO2, thoroughly flushed with H2/CO2, then exposed to ethanol, produced maximal ethane levels (at 585 and 974 mM ethanol) of about 215 nmoles per tube, with an ethane/methane ratio of 1×10-3. Mid-logarithmic-phase cultures of Methanosarcina barkeri strain Fusaro also produced ethane (up to 20 nmoles per tube) when exposed to ethanol. Cultures of strain 227 growing on methanol in the absence of H2 produced 6 nmoles per tube of ethane when supplemented with ethanol whereas those lacking ethanol but containing H2 and/or methanol produced 1.6 nmoles per tube. Cultures of Methanococcus deltae strains LH and RC, Methanospirillum hungatei or Methanobacterium thermoautotrophicum produced 5 nmoles ethane per tube when grown in medium containing ethanol. Ethanol concentrations of 177–886 mM were inhibitory to growth of all methanogens examined. Production of ethane by Methanosarcina was inhibited by >62 mM methanol, and both methanogenic inhibitors tested, CCl4 and Br–CH2–CH2–SO inf3 sup- , inhibited ethane and methane production concurrently. The data suggest that ethanol is converted to ethane by Methanosarcina species using the terminal portion of the methanol-to-methane pathway.  相似文献   

17.
Exogenous 5-hydroxy-[2-14C]benzimidazole was transformed by Methanosarcina barkeri into 5-hydroxy-[2-14C]benzimidazolylcobamide. Thereby the endogenous biosynthesis of 5-hydroxybenzimidazole was completely blocked.Benzimidazole and 5,6-dimethylbenzimidazole were used by M. barkeri to form benzimidazolylcobamide respectively 5,6-dimethylbenzimidazolylcobamide (vitamin B12), but in these cases the endogenous biosynthesis of factor III was not completely suppressed.With [2-14C]benzimidazole it was demonstrated that this base as well as the benzimidazolylcobamide formed thereof are no precursors in the biosynthesis of 5-hydroxybenzimidazolylcobamide.Glycine instead was found to be a building block for the biosynthesis of 5-hydroxybenzimidazole, since radioactivity from [1-14C] and [2-14C]glycine was incorporated, into the base moiety of factor III, but not into its corrin moiety. With [1-13C]glycine and 13C-NMR-spectroscopy it was shown that C-1 of glycine gets C-3a of 5-hydroxybenzimidazole.[1-13C]glycine also led to a single prominent signal in the 13C-NMR-spectrum of coenzyme F420, this was assigned to C-10a.Thus C-1 of glycine was incorporated into the hydroxybenzene part of 5-hydroxybenzimidazole, whereas it was not incorporated into this part of coenzyme F420, indicating that the hydroxybenzene part of these two compounds is not formed from a common intermediate. L-[U-14C]glutamate led to the exclusive labeling of the corrin ring of factor III, showing that the corrin precursor 5-aminolevulinic acid is formed by the C-5 pathway in M. barkeri.These experiments indicate that the biosynthesis of factor III in the archaebacterium M. barkeri is similar to the corrinoid biosynthesis in the anaerobic eubacteria Eubacterium limosum, Clostridium barkeri, and Clostridium thermoaceticum.  相似文献   

18.
From our previous studies on the mechanism of methane formation from acetate it was known that cell extracts of acetate-grown Methanosarcina barkeri (100 000 × g supernatant) catalyze the conversion of acetyl-CoA plus tetrahydromethanopterin (=H4MPT) to methyl-H4MPT, CoA, CO2 and presumably H2. We report here that these extracts, in the absence of H4MPT, mediated an isotope exchange between CO2 ([S]0.5 v=0.2% in the gas phase) and the carbonyl group of acetyl-CoA at almost the same specific rate as the above conversion (10 nmol · min–1 · mg protein–1). Both the exchange and the formation of methyl-H4MPT were inhibited by N2O, suggesting that a corrinoid could be the primary methyl group acceptor in the acetyl-CoA C-C-cleavage reaction. Both activities were dependent on the presence of H2 (E0=–414 mV). Ti(III)citrate (E0=–480 mV) was found to substitute for H2, indicating a reductive activation of the system. In the presence of Ti(III)citrate it was shown that the formation of CO2 from the carbonyl group of acetyl-CoA is associated with a 1:1 stoichiometric generation of H2. Free CO, a possible intermediate in CO2 and H2 formation, was not detected.Non-standard abbreviations AcCoA acetyl-CoA - acetyl-P acetyl phosphate - OH-B12 hydroxocobalamin - H-S-CoM coenzyme M = 2-mercaptoethanesulfonate - CH3-S-CoM methyl-coenzyme M = 2-(methylthio)ethanesulfonate - H-S-HTP N-7-mercaptoheptanoylthreonine phosphate - HTP-S-S-HTP disulfide of H-S-HTP - CoM-S-S-HTP disulfide of H-S-CoM and H-S-HTP - H4MPT tetrahydromethanopterin - CH3-H4MPT N5-methyl-H4MPT - DTT dithiothreitol - MOPS morpholinopropane sulfonic acid  相似文献   

19.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.  相似文献   

20.
The conversion of formaldehyde to methylcoenzyme M in cell-free extracts of Methanobacterium thermoautotrophicum was stimulated up to 10-fold by catalytic amounts of the heterodisulfide (CoM-S-S-HTP) of coenzyme M and 7-mercaptoheptanoylthreonine phosphate. The stimulation required the additional presence of ATP, also in catalytic concentrations. ATP and CoM-S-S-HTP were mutually stimulatory on the methylcoenzyme M formation and it was concluded that the compounds were both involved in the reductive activation of the methyltetrahydromethanopterin: coenzyme M methyltransferase. Micromolar concentrations of benzyl viologen or cyanocobalamin inhibited the formaldehyde conversion; these compounds, however, strongly stimulated the reduction of CoM-S-S-HTP. The results described here closely resemble observations made on the activation and reduction of CO2 to formylmethanofuran indicating that this step and the reductive activation of the methyltransferase are controlled by some common mechanism.Abbreviations HS-CoM Coenzyme M, 2-mercaptoethanesulfonate - CH3S-CoM methylcoenzyme M, 2-(methylthio)ethanesulfonate - H4MPT 5,6,7,8-tetrahydromethanopterin - MFR methanofuran - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP the heterodisulfide of HS-CoM and HS-HTP - BES 2-bromoethanesulfonate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - CN-Cbl cyanocobalamin - HO-Cbl hydroxycobalamin - HBI 5-hydroxybenzimidazole - DMBI 5,6-dimethylbenzimidazole  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号