首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I M Russu  S S Wu  N T Ho  G W Kellogg  C Ho 《Biochemistry》1989,28(12):5298-5306
High-resolution proton nuclear magnetic resonance spectroscopy has been used to investigate the molecular mechanism of the Bohr effect of human normal adult hemoglobin in the presence of two allosteric effectors, i.e., chloride and inorganic phosphate ions. The individual hydrogen ion equilibria of 22-26 histidyl residues of hemoglobin have been measured in anion-free 0.1 M HEPES buffer and in the presence of 0.18 M chloride or 0.1 M inorganic phosphate ions in both deoxy and carbonmonoxy forms. The results indicate that the beta 2-histidyl residues are strong binding sites for chloride and inorganic phosphate ions in hemoglobin. The affinity of the beta 2-histidyl residues for these anions is larger in the deoxy than in the carbonmonoxy form. Nevertheless, the contribution of these histidyl residues to the anion Bohr effect is small due to their low pK value in deoxyhemoglobin in anion-free solvents. The interactions of chloride and inorganic phosphate ions with the hemoglobin molecule also result in lower pK values and/or changes in the shapes of the hydrogen ion binding curves for several other surface histidyl residues. These results suggest that long-range electrostatic interactions between individual ionizable sites in hemoglobin could play an important role in the molecular mechanism of the anion Bohr effect.  相似文献   

2.
I M Russu  S S Wu  K A Bupp  N T Ho  C Ho 《Biochemistry》1990,29(15):3785-3792
High-resolution 1H and 31P nuclear magnetic resonance spectroscopy has been used to investigate the binding of 2,3-diphosphoglycerate to human normal adult hemoglobin and the molecular interactions involved in the allosteric effect of the 2,3-diphosphoglycerate molecule on hemoglobin. Individual hydrogen ion NMR titration curves have been obtained for 22-26 histidyl residues of hemoglobin and for each phosphate group of 2,3-diphosphoglycerate with hemoglobin in both the deoxy and carbonmonoxy forms. The results indicate that 2,3-diphosphoglycerate binds to deoxyhemoglobin at the central cavity between the two beta chains and the binding involves the beta 2-histidyl residues. Moreover, the results suggest that the binding site of 2,3-diphosphoglycerate to carbonmonoxyhemoglobin contains the same (or at least some of the same) amino acid residues responsible for binding in the deoxy form. As a result of the specific interactions with 2,3-diphosphoglycerate, the beta 2-histidyl residues make a significant contribution to the alkaline Bohr effect under these experimental conditions (up to 0.5 proton/Hb tetramer). 2,3-Diphosphoglycerate also affects the individual hydrogen ion equilibria of several histidyl residues located away from the binding site on the surface of the hemoglobin molecule, and, possibly, in the heme pockets. These results give the first experimental demonstration that long-range electrostatic and/or conformational effects of the binding could play an important role in the allosteric effect of 2,3-diphosphoglycerate on hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
T Y Fang  M Zou  V Simplaceanu  N T Ho  C Ho 《Biochemistry》1999,38(40):13423-13432
Site-directed mutagenesis has been used to construct two mutant recombinant hemoglobins (rHbs), rHb(betaH116Q) and rHb(betaH143S). Purified rHbs were used to assign the C2 proton resonances of beta116His and beta143His and to resolve the ambiguous assignments made over the past years. In the present work, we have identified the C2 proton resonances of two surface histidyl residues of the beta chain, beta116His and beta143His, in both the carbonmonoxy and deoxy forms, by comparing the proton nuclear magnetic resonance (NMR) spectra of human normal adult hemoglobin (Hb A) with those of rHbs. Current assignments plus other previous assignments complete the assignments for all 24 surface histidyl residues of human normal adult hemoglobin. The individual pK values of 24 histidyl residues of Hb A were also measured in deuterium oxide (D(2)O) in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer in the presence of 0.1 M chloride at 29 degrees C by monitoring the shifts of the C2 proton resonances of the histidyl residues as a function of pH. Among those surface histidyl residues, beta146His has the biggest contribution to the alkaline Bohr effect (63% at pH 7.4), and beta143His has the biggest contribution to the acid Bohr effect (71% at pH 5.1). alpha20His, alpha112His, and beta117His have essentially no contribution; alpha50His, alpha72His, alpha89His, beta97His, and beta116His have moderate positive contributions; and beta2His and beta77His have a moderate negative contribution to the Bohr effect. The sum of the contributions from 24 surface histidyl residues accounted for 86% of the alkaline Bohr effect at pH 7.4 and about 55% of the acid Bohr effect at pH 5.1. Although beta143His is located in the binding site for 2,3-bisphosphoglycerate (2,3-BPG) according to the crystal structure of deoxy-Hb A complexed with 2, 3-BPG, beta143His is not essential for the binding of 2,3-BPG in the neutral pH range according to the proton NMR and oxygen affinity studies presented here. With the accurately measured and assigned individual pK values for all surface histidyl residues, it is now possible to evaluate the Bohr effect microscopically for novel recombinant Hbs with important functional properties, such as low oxygen affinity and high cooperativity. The present study further confirms the importance of a global electrostatic network in regulating the Bohr effect of the hemoglobin molecule.  相似文献   

4.
I M Russu  N T Ho  C Ho 《Biochemistry》1982,21(20):5031-5043
High-resolution proton nuclear magnetic resonance (NMR) spectroscopy at 250 MHz has been used to titrate 22 individual surface histidyl residues (11 per alpha beta dimer) of human normal adult hemoglobin in both the deoxy and the carbon monoxy forms. The proton resonances of beta 2, beta 143, and beta 146 histidyl residues are assigned by a parallel 1H NMR titration of appropriate mutant and chemically modified hemoglobins. The pK values of the 22 histidyl residues investigated are found to range from 6.35 to 8.07 in the deoxy form and from 6.20 to 7.87 in the carbon monoxy form, in the presence of 0.1 M Bis-Tris or 0.1 M Tris buffer in D2O with chloride ion concentrations varying from 5 to 60 mM at 27 degrees C. Four histidyl residues in the deoxy form and one histidyl residue in the carbon monoxy form are found to have proton nuclear magnetic resonance titration curves that deviate greatly from that predicted by the simple proton dissociation equilibrium of a single ionizable group. The proton nuclear magnetic resonance data are used to ascertain the role of several surface histidyl residues in the Bohr effect of hemoglobin under the above-mentioned experimental conditions. Under these experimental conditions, we have found that (i) the beta 146 histidyl residues do not change their electrostatic environments significantly upon binding of ligand to deoxyhemoglobin and, thus, their contribution to the Bohr effect is negligible, (ii) the beta 2 histidyl residues have a negative contribution to the Bohr effect, and (iii) the total contribution of the 22 histidyl residues investigated here to the Bohr effect is, in magnitude, comparable to the Bohr effect observed experimentally. These results suggest that the molecular mechanism of the Bohr effect proposed by Perutz [Perutz, M.F. (1970) Nature (London) 228, 726-739] is not unique and that the detailed mechanism depends on experimental conditions, such as the solvent composition.  相似文献   

5.
M R Busch  J E Mace  N T Ho  C Ho 《Biochemistry》1991,30(7):1865-1877
Assessment of the roles of the carboxyl-terminal beta 146 histidyl residues in the alkaline Bohr effect in human normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. Previous resonance assignments in low ionic strength buffers for the beta 146 histidyl residue in the carbonmonoxy form of hemoglobin have been controversial [see Ho and Russu (1987) Biochemistry 26, 6299-6305; and references therein]. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146 beta)-hemoglobin, and the mutant hemoglobins Cowtown (beta 146His----Leu) and York (beta 146His----Pro), we have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The spectra of each of these variants show additional perturbations; therefore, the assignment has been confirmed by an incremental titration of buffer conditions to benchmark conditions, i.e., 0.2 M phosphate, where the assignment of this resonance is unambiguous. The strategy of incremental titration of buffer conditions also allows extension of this resonance assignment to spectra taken in 0.1 M [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane buffer. Participation of the beta 146 histidyl residues in the Bohr effect has been calculated from the pK values determined for the assigned resonances in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer. Our results indicate that the contribution of the beta 146 histidyl residues is 0.52 H+/hemoglobin tetramer at pH 7.6, markedly less than the 0.8 H+/hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (beta 146His----Leu) by Shih and Perutz [(1987) J. Mol. Biol. 195, 419-422]. We have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and we suggest that these pK differences may in part account for this discrepancy. Furthermore, summation of the positive contribution of the beta 146 histidyl residues and the negative contribution of the beta 2 histidyl residues to the maximum Bohr effect measured in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer suggests that additional sites in the hemoglobin molecule account for proton release upon ligation greater than the contribution of the beta 146 histidyl residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

7.
Y H Lee  B L Currie  M E Johnson 《Biochemistry》1986,25(19):5647-5654
In a preliminary report, we have previously shown that N-[(2,2,5,5-tetramethyl-1-oxypyrrolidin-3-yl)carbonyl]-L-phenyl ala nine tert-butyl ester (SL-Phe) exhibits specific binding to hemoglobin and an antiaggregation activity more than 2 orders of magnitude greater than that of phenylalanine [Lu, H.-Z., Currie, B. L., & Johnson, M. E. (1984) FEBS Lett. 173, 259-263]. Transverse 1H NMR relaxation measurements have been used to investigate the interaction of SL-Phe with hemoglobin molecules by use of the resonances assigned to the C2 protons of the beta 2 His, the beta 143 His, and the beta 146 or beta 97 His residues as intrinsic probes. Distance calculations using the paramagnetically induced relaxation data suggest that the SL-Phe binding site is approximately 12-16 A away from the C2 protons of the beta 2 His and the beta 146 or beta 97 His residues in the (carbonmonoxy)hemoglobin tetramer; for deoxyhemoglobin, the distances are approximately 14-17 A between the SL-Phe binding site and the C2 protons of the beta 2 His, the beta 143 His, and the beta 146 His residues. Calculations using the (carbonmonoxy)hemoglobin crystal atomic coordinates only restrict the probable SL-Phe binding region to the full F and H helices of the beta-chain and a small section of the alpha-chain. For deoxyhemoglobin, the distance calculations provide greater restrictions on the probable binding region, limiting it to small sections of the beta-chain F, G, and H helices near the EF bend and to a few residues on the alpha-chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The contribution of the interaction of chloride ions with deoxy and oxyhemoglobin to the Bohr effect can be described by a simple binding model. Applying this model to experiment data reveals that at physiological pH and ionic strength about half of the release of Bohr protons is due to a difference in chloride ion binding to deoxy- and oxyhemoglobin. The chloride-independent part of the Bohr effect corresponds with the shift in pK which His-146 beta shows upon oxygenation. The proton absorptioon by hemoglobin observed upon oxygenation below pH 6 is apparently due to a chloride-ion-induced proton uptake, which is larger for oxyhemoglobin than for deoxyhemoglobin. The analysis of the experimental data indicates the existence of only two oxygen-linked chloride ion binding sites in both deoxy and oxyhemoglobin. In deoxyhemoglobin the binding sites most likely consist of Val-1 alpha of one chain and Arg-141 alpha of the partner chain. The sites in oxyhemoglobin consist of groups with a pK value in the neutral pH range; they do not contain lysyl or arginyl residues.  相似文献   

9.
Hydrogen exchange experiments using functional labeling and fragment separation methods were performed to study interactions at the C terminus of the hemoglobin beta subunit that contribute to the phosphate effect and the Bohr effect. The results show that the H-exchange behavior of several peptide NH at the beta chain C terminus is determined by a transient, concerted unfolding reaction involving five or more residues, from the C-terminal His146 beta through at least Ala142 beta, and that H-exchange rate can be used to measure the stabilization free energy of interactions, both individually and collectively, at this locus. In deoxy hemoglobin at pH 7.4 and 0 degrees C, the removal of 2,3-diphosphoglycerate (DPG) or pyrophosphate (loss of a salt to His143 beta) speeds the exchange of the beta chain C-terminal peptide NH protons by 2.5-fold (at high salt), indicating a destabilization of the C-terminal segment by 0.5 kcal of free energy. Loss of the His146 beta 1 to Asp94 beta 1 salt link speeds all these protons by 6.3-fold, indicating a bond stabilization free energy of 1.0 kcal. When both these salt links are removed together, the effect is found to be strictly additive; all the protons exchange faster by 16-fold indicating a loss of 1.5 kcal in stabilization free energy. Added salt is slightly destabilizing when DPG is present but provides some increased stability, in the 0.2 kcal range, when DPG is absent. The total allosteric stabilization energy at each beta chain C terminus in deoxy hemoglobin under these conditions is measured to be 3.8 kcal (pH 7.4, 0 degrees C, with DPG). In oxy hemoglobin at pH 7.4 and 0 degrees C, stability at the beta chain C terminus is essentially independent of salt concentration, and the NES modification, which in deoxy hemoglobin blocks the His146 beta to Asp94 beta salt link, has no destabilizing effect, either at high or low salt. These results appear to show that the His146 beta salt link, which participates importantly in the alkaline Bohr effect, does not reform to Asp94 beta or to any other salt link acceptor in a stable way in oxy hemoglobin at low or high salt conditions.  相似文献   

10.
ESR spectra of the carbonmonoxy, oxy, and deoxy derivatives of hemoglobin Izu [Hb Izu (Macaca): beta 83 (EF 7) Gly leads to Cys] labeled at cysteine beta 83 with maleimide spin label have been observed in the presence and absence of 2,3-diphosphoglycerate and inositol hexaphosphate. The tau c values obtained from the spectra indicated that inositol hexaphosphate binds to all the derivatives of Hb Izu, but 2,3-diphosphoglycerate only to the deoxy derivatives.  相似文献   

11.
I M Russu  C Ho 《Biochemistry》1986,25(7):1706-1716
The contribution of the carboxyl-terminal histidines of the beta chains, beta 146(HC3), to the alkaline Bohr effect of human normal adult hemoglobin has been shown by this laboratory to depend upon the solvent composition. Using high-resolution proton nuclear magnetic resonance spectroscopy, we have found that the pKa value of the beta 146-histidine is 8.0 in the deoxy form, while in the carbonmonoxy form it ranges from 7.1 to 7.85 depending upon the concentration of inorganic phosphate and chloride ions present. These conclusions have been questioned by Perutz and co-workers on the basis of biochemical, structural, and proton nuclear magnetic resonance studies of mutant and enzymatically or chemically modified hemoglobins [Perutz, M. F., Kilmartin, J. V., Nishikura, K., Fogg, J. H., Butler, P. J., & Rollema, H. S. (1980) J. Mol. Biol. 138, 649-670; Kilmartin, J. V., Fogg, J. H., & Perutz, M. F. (1980) Biochemistry 19, 3189-3193; Perutz, M. F., Gronenborn, A. M., Clore, G. M., Fogg, J. H., & Shih, D. T.-b. (1985) J. Mol. Biol. 183, 491-498]. In this work, we use proton nuclear magnetic resonance spectroscopy to assess the effects of structural modifications on the histidyl residues and on the overall conformation of the hemoglobin molecule in solution. The structural perturbations investigated all occur within the tertiary domains around the carboxyl-terminal region of the beta chain as follows: Hb Cowtown (beta 146His----Leu); Hb Wood (beta 97His----Leu); Hb Malm? (beta 97His----Gln); Hb Abruzzo (beta 143His----Arg). Our results demonstrate that the conformational effects of single-site structural modifications upon the conformation and dynamics of hemoglobin depend strongly on their location in the three-dimensional structure of the protein molecule and also on their chemical nature. Furthermore, in normal hemoglobin, the spectral properties of several surface histidyl residues are found to depend, in the ligated state, upon the nature of the ligand. Our present findings do not support the recent spectral assignments proposed by Perutz et al. (1985) for the proton resonances of the beta 146- and beta 97-histidines and their suggestion that the enzymatic removal of the carboxyl-terminal beta 146-histidyl residues induces a conformational equilibrium for the beta 97-histidines in the des-beta 146His hemoglobin molecule in the carbonmonoxy form.  相似文献   

12.
Hemoglobin can be specifically carboxymethylated at its NH2-terminal amino groups (i.e. HbNHCH2COO-) to form the derivatives alpha 2Cm beta 2, alpha 2 beta 2Cm, and alpha 2Cm beta 2Cm, where Cm represents carboxymethyl. Previous studies (DiDonato, A., Fantl, W. J., Acharya, A. S., and Manning, J. M. (1983) J. Biol. Chem. 258, 11890-11895) suggested that these derivatives could be used as stable analogues of the corresponding carbamino (Hb-NHCOO-) forms of hemoglobin, adducts that are generated reversibly in vivo when CO2 combines with alpha-amino groups. In this paper we present x-ray diffraction studies of both carbamino hemoglobin and carboxymethylated hemoglobin that verify this proposal and we use the carboxymethylated derivatives to study the functional consequences of placing a covalently bound carboxyl group at the NH2 terminus of each hemoglobin subunit. Our studies also provide additional information concerning the oxygen-linked binding of anions and protons to Val-1 alpha. Difference electron density analysis of deoxy alpha 2Cm beta 2Cm versus the unmodified deoxyhemoglobin tetramer (deoxy alpha 2 beta 2) shows that the covalently bound carboxyl moieties replace inorganic anions that are normally bound to the free NH2-terminal amino groups in crystals of native deoxyhemoglobin grown from solutions of concentrated (2.3 M) ammonium sulfate. In the case of the beta-subunits, the carboxymethyl group replaces an inorganic anion normally bound between the alpha-amino group of Val-1 beta, the epsilon-amino group of Lys-82 beta, and backbone NH groups at the NH2-terminal end of the F'-helix. In the case of the alpha-subunits, the carboxymethyl group replaces an anion that is normally bound between the alpha-amino group of Val-1 alpha and the beta-OH group of Ser-131 alpha. A corresponding difference electron map of carbamino deoxyhemoglobin in low-salt (50 mM KCl) crystals shows that CO2 bound in the form of carbamate occupies the same two anion binding sites. The alkaline Bohr effect of alpha 2Cm beta 2 is only marginally lower (approximately 7%) than that of alpha 2 beta 2. Previous studies (Kilmartin, J. V., 1977) have shown that about 30% of the alkaline Bohr effect is the result of an oxygen-linked change in the pK alpha of Val-1 alpha, and O'Donnell et al., 1979, found that this portion of the Bohr effect is the result of the oxygen-linked binding of chloride to Val-1 alpha.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Cheng Y  Shen TJ  Simplaceanu V  Ho C 《Biochemistry》2002,41(39):11901-11913
To investigate the roles of beta93 cysteine in human normal adult hemoglobin (Hb A), we have constructed four recombinant mutant hemoglobins (rHbs), rHb (betaC93G), rHb (betaC93A), rHb (betaC93M), and rHb (betaC93L), and have prepared two chemically modified Hb As, Hb A-IAA and Hb A-NEM, in which the sulfhydryl group at beta93Cys is modified by sulfhydryl reagents, iodoacetamide (IAA) and N-ethylmaleimide (NEM), respectively. These variants at the beta93 position show higher oxygen affinity, lower cooperativity, and reduced Bohr effect relative to Hb A. The response of some of these Hb variants to allosteric effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP), is decreased relative to that of Hb A. The proton nuclear magnetic resonance (NMR) spectra of these Hb variants show that there is a marked influence on the proximal heme pocket of the beta-chain, whereas the environment of the proximal heme pocket of the alpha-chain remains unchanged as compared to Hb A, suggesting that higher oxygen affinity is likely to be determined by the heme pocket of the beta-chain rather than by that of the alpha-chain. This is further supported by NO titration of these Hbs in the deoxy form. For Hb A, NO binds preferentially to the heme of the alpha-chain relative to that of the beta-chain. In contrast, the feature of preferential binding to the heme of the alpha-chain becomes weaker and even disappears for Hb variants with modifications at beta93Cys. The effects of IHP on these Hbs in the NO form are different from those on HbNO A, as characterized by (1)H NMR spectra of the T-state markers, the exchangeable resonances at 14 and 11 ppm, reflecting that these Hb variants have more stability in the R-state relative to Hb A, especially rHb (betaC93L) and Hb A-NEM in the NO form. The changes of the C2 proton resonances of the surface histidyl residues in these Hb variants in both the deoxy and CO forms, compared with those of Hb A, indicate that a mutation or chemical modification at beta93Cys can result in conformational changes involving several surface histidyl residues, e.g., beta146His and beta2His. The results obtained here offer strong evidence to show that the salt bridge between beta146His and beta94Asp and the binding pocket of allosteric effectors can be affected as the result of modifications at beta93Cys, which result in the destabilization of the T-state and a reduced response of these Hbs to allosteric effectors. We further propose that the impaired alkaline Bohr effect can be attributed to the effect on the contributions of several surface histidyl residues which are altered because of the environmental changes caused by mutations and chemical modifications at beta93Cys.  相似文献   

14.
The crystal structure of a high oxygen affinity species of hemoglobin, bar-headed goose hemoglobin in deoxy form, has been determined to a resolution of 2.8 A. The R and R(free) factor of the model are 0.197 and 0.243, respectively. The structure reported here is a special deoxy state of hemoglobin and indicates the differences in allosteric mechanisms between the goose and human hemoglobins. The quaternary structure of the goose deoxy hemoglobin shows obvious differences from that of human deoxy hemoglobin. The rotation angle of one alphabeta dimer relative to its partner in a tetramer molecule from the goose oxy to deoxy hemoglobin is only 4.6 degrees, and the translation is only 0.3 A, which are much smaller than those in human hemoglobin. In the alpha(1)beta(2) switch region of the goose deoxy hemoglobin, the imidazole ring of His beta(2)97 does not span the side-chain of Thr alpha(1)41 relative to the oxy hemoglobin as in human hemoglobin. And the tertiary structure changes of heme pocket and FG corner are also smaller than that in human hemoglobin. A unique mutation among avian and mammalian Hbs of alpha119 from proline to alanine at the alpha(1)beta(1 )interface in bar-headed goose hemoglobin brings a gap between Ala alpha119 and Leu beta55, the minimum distance between the two residues is 4.66 A. At the entrance to the central cavity around the molecular dyad, some residues of two beta chains form a positively charged groove where the inositol pentaphosphate binds to the hemoglobin. The His beta146 is at the inositol pentaphosphate binding site and the salt-bridge between His beta146 and Asp beta94 does not exist in the deoxy hemoglobin, which brings the weak chloride-independent Bohr effect to bar-headed goose hemoglobin.  相似文献   

15.
Hemoglobin Deer Lodge is an abnormal human hemoglobin with arginine substituted for histidine at the beta 2 position. X-ray crystallography of normal human hemoglobin has shown that the beta 2 residue is normally part of the binding site for 2,3-diphosphoglycerate. The substitution of arginine for histidine at beta 2 affects both the kinetics and equilibria of ligand binding. When stripped of anions, Hb Deer Lodge has an increased oxygen affinity and a decreased degree of cooperativity relative to Hb A. The alkaline Bohr effect is slightly increased and there are marked increases in oxygen affinity below pH 6 and above pH 8. In the presence of 2,3-diphosphoglycerate the cooperativity in increases to nromal and the pH dependence of oxygen binding is reduced. This contrasts with the enhanced Bohr effect seen for Hb A in the presence of organic phosphates. Due to enhanced anion binding at high pH, Hb Deer Lodge has a slightly lower oxygen affinity than Hb A at pH 9 in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate. Kinetic studies at neutral pH in the absence of organic phosphates revealed biphasicity in the rate of oxygen dissociation from Hb Deer Lodge, while approximately linear time courses were observed for Hb A. The fast phase of the oxygen dissociation kinetics shows great pH sensitivity, and organic phosphates increase the rate and percentage of the fast phase without greatly affecting the slow phase. The two phases are not resolvable at high pH. CO combination kinetics are much like those of Hb A except that "fast" and "slow" phases were apparent at wavelengths near the deoxy-CO isobestic point. We suggest that functional differences between the alpha and beta chains are enhanced in Hb Deer Lodge. After flash photolysis of the CO derivative, the percentage of quickly reacting material was slightly greater for Hb Deer Lodge than for Hb A. This may imply a somewhat greater tendency to dissociate into high affinity subunits. The substitution of arginine for histidine at beta 2 thus results in a macromolecule whose ligand-binding properties are significantly altered, the primary differences being expressed at high pH where Hb Deer Lodge binds anions more strongly than Hb A. The properties of Hb Deer Lodge are compared to those of other hemoglobin variants with substitutions at residues involved in binding of 2,3-diphosphoglycerate.  相似文献   

16.
The principal component of normal adult human hemoglobin was equilibrated under various conditions with 13CO2. Quantitative analysis of the carbamino resonance intensities over the pH range of 6.5 to 9.0 shows that the effects of conversion from the deoxy to the liganded state in reducing the carbamino adduct formation occur predominantly at Val-1beta. Analysis of the pH dependence of carbamino formation at constant total carbonates yields values of pKz and pKc for Val-1beta and Val-1alpha in the deoxy and liganded conditions. In contrast to the Val-1beta as the allosteric site for CO2, the Val-1alpha site is shown to be primarily an alkaline Bohr group. 2,3-Diphosphoglycerate is shown to reduce substantially the Val-1beta carbamino resonance intensity in deoxyhemoglobin. Evidence for 2,3-diphosphoglycerate effects in carbon monoxide hemoglobin at both Val-1alpha and Val-1beta sites is presented. Enhanced carbamino formation in carbon monoxide hemoglobin at Val-1beta is observed at pH values less than 7.8. Finally, chemical exchange analysis of the spectra shows the release rate of the deoxy Val-1alpha carbamino adduct to be greater than that for deoxy Val-1beta. At pH 7.47 k-1obs,beta congruent to 1.0 and k-1obs, alpha congruent to 11.0 s-1.  相似文献   

17.
The high-resolution proton nuclear magnetic resonance spectra of carp hemoglobin have been compared to those of human normal adult hemoglobin. Carp deoxy and carbonmonoxy hemoglobins in the deoxy-type quaternary state exhibit two downfield exchangeable proton resonances as compared to four seen in human normal adult deoxyhemoglobin. This suggests that two of the hydrogen bonds present in human normal adult deoxyhemoglobin are absent or occur in very different environments in carp hemoglobin. One of the exchangeable proton resonances of carp hemoglobin, while present in the deoxy-type quaternary state of the carbonmonoxy and deoxy derivatives, is absent in the oxy-type quaternary state of both, in agreement with the assignments of these quaternary structures by other methods. The ring-current-shifted proton resonances (sensitive tertiary structural markers) of carp carbonmonoxyhemoglobin are substantially different from those of human normal adult hemoglobin. The aromatic proton resonance region of carp hemoglobin has fewer resonances than that of human normal adult hemoglobin, consistent with its much reduced histidine content. The hyperfine-shifted proximal histidyl NH-exchangeable proton resonances of carp hemoglobin suggest that during the transition from the oxy to the deoxy quaternary structure, there is a greater alteration in the heme pocket of one type of subunits (presumably the beta chain) than that in the other subunit. The present results suggest that there are differences in both tertiary and quaternary structures between carp and human normal adult hemoglobins which could contribute to the great differences in the functional properties between these two proteins.  相似文献   

18.
The effect of pressure on the tertiary and quaternary structures of human oxy, carbonmonoxy, and deoxyhemoglobin was examined by high pressure NMR spectroscopy at 300 MHz. The increased pressure displaced the ring current-shifted gamma 1-methyl resonance of beta E11 valine for oxy- and carbonmonoxyhemoglobin to the upfield side, whereas that of the alpha subunit was insensitive to pressure. Such a preferential pressure-induced upfield shift for the beta E11 valine gamma 1-methyl signal was also encountered for the isolated carbonmonoxy beta chain. For deoxyhemoglobin, hyperfine shifted resonances of the heme peripheral proton groups and the proximal histidyl NH proton for the beta subunit were pressure-dependent, in contrast to the pressure-insensitive responses for these resonances of the alpha subunit. These results indicate the structural nonequivalence of the pressure-induced structural changes in the alpha and beta subunits of hemoglobin. The exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds which have been used as the oxy and deoxy quaternary structural probes were not changed upon pressurization. From all of above results, it was concluded that pressure induces the tertiary structural change preferentially at the beta heme pocket of the ferrous hemoglobin derivatives with the quaternary structure retained.  相似文献   

19.
Carbamylation of the NH2-terminal residues of the beta chains on hemoglobin (alpha2beta2c) leads to a reduced but still significant binding of 2,3-diphosphoglycerate, but has no effect on the oxygen-linked binding of chloride or phosphate, both of which are thought to bind to some of the same residues as the organic phosphate. Studies by others have shown that the binding of inorganic anions is not diminished in either horse hemoglobin or in hemoglobin Little Rock, in which four of the six other binding sites (histidine residues) for organic phosphates are replaced by glutamine residues. We suggest, therefore, that lysines 82 of the beta chains, which are the remaining 2 residues in the binding crevice for the organic phosphate, and which are invariant in the known sequences of mammalian hemoglobins, may be the primary binding site for inorganic anions. The extent of inhibition of gelation by increasing ionic strength is identical for the hybrids alpha2beta2, alpha2cbeta2, and alpha2beta2c of hemoglobin S. These results indicate the NH2-terminal residues of the chains are not involved in primary electrostatic interactions during aggregation of deoxyhemoglobin S.  相似文献   

20.
Previous studies point to the acidic amino-terminal segment of band 3, the anion transport protein of the red cell, as the common binding site for hemoglobin and several of the glycolytic enzymes to the erythrocyte membrane. We now report on the interaction of hemoglobin with the synthetic peptide AcM-E-E-L-Q-D-D-Y-E-D-E, corresponding to the first 11 residues of band 3, and with the entire 43,000-Da cytoplasmic domain of the protein. In the presence of increasing concentrations of the peptide, the oxygen binding curve for hemoglobin is shifted progressively to the right, indicating that the peptide binds preferentially to deoxyhemoglobin. The dissociation constant for the deoxyhemoglobin-peptide complex at pH 7.2 in the presence of 100 mM NaCl is 0.31 mM. X-ray crystallographic studies were carried out to determine the exact mode of binding of the peptide to deoxyhemoglobin. The difference electron density map of the deoxyhemoglobin-peptide complex at 5 A resolution showed that the binding site extends deep (approximately 18 A) into the central cavity between the beta chains, along the dyad symmetry axis, and includes Arg 104 beta 1 and Arg 104 beta 2 as well as most of the basic residues within the 2,3-diphosphoglycerate binding site. The peptide appears to have an extended conformation with only 5 to 7 of the 11 residues in contact with hemoglobin. In agreement with the crystallographic studies, binding of the peptide to deoxyhemoglobin was blocked by cross-linking the beta chains at the entrance to the central cavity. Oxygen equilibrium studies showed that the isolated cytoplasmic fragment of band 3 also binds preferentially to deoxyhemoglobin. The binding of the 43,000-Da fragment to hemoglobin was inhibited in the cross-linked derivative indicating that the acidic amino-terminal residues in the intact cytoplasmic domain also bind within the central cavity of the hemoglobin tetramer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号