首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dragline spider silk has been intensively studied for its superior qualities as a biomaterial. In previous studies, we made use of the baculovirus mediated expression system for the production of a recombinant Araneus diadematus spider silk dragline ADF4 protein and its self‐assembly into intricate fibers in host insect cells. In this study, our aim was to explore the function of the major repetitive domain of the dragline spider silk. Thus, we generated an array of synthetic proteins, each containing a different number of identical repeats up to the largest recombinantly expressed spider silk to date. Study of the self‐assembly properties of these proteins showed that depending on the increasing number of repeats they give rise to different assembly phenotypes, from a fully soluble protein to bona fide fibers with superior qualities. The different assembly forms, the corresponding chemical resistance properties obtained as well as ultrastructural studies, revealed novel insights concerning the structure and intermolecular interactions of the repetitive and nonrepetitive domains. Based on these observations and current knowledge in the field, we hereby present a comprehensive hypothetical model for the mechanism of dragline silk self‐assembly and fiber formation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 458–468, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
3.
Spider dragline silk is a remarkable fiber made of unique proteins—spidroins—secreted and stored as a concentrated aqueous dope in the major ampullate gland of spiders. This feat has inspired engineering of microbes to secrete spidroins for spinning into tough synthetic fibers, which remains a challenge due to the aggregation-prone feature of the spidroins and low secretory capacity of the expression hosts. Here we report metabolic engineering of Corynebacterium glutamicum to efficiently secrete recombinant spidroins. Using a model spidroin MaSpI16 composed of 16 consensus repeats of the major ampullate spidroin 1 of spider Trichonephila clavipes, we first identified the general Sec protein export pathway for its secretion via N-terminal fusion of a translocation signal peptide. Next we improved the spidroin secretion levels by selection of more suitable signal peptides, multiplexed engineering of the bacterial host, and by high cell density cultivation of the resultant recombinant strains. The high abundance (>65.8%) and titer (554.7 mg L–1) of MaSpI16 in the culture medium facilitated facile, chromatography-free recovery of the spidroin with a purity of 93.0%. The high solubility of the purified spidroin enabled preparation of highly concentrated aqueous dope (up to 66%) amenable for spinning into synthetic fibers with an appreciable toughness of 70.0 MJ m−3. The above metabolic and processing strategies were also found applicable for secretory production of the higher molecular weight spidroin MaSpI64 (64 consensus repeats) to yield similarly tough fibers. These results suggest the good potential of secretory production of protein polymers for sustainable supply of fibrous materials.  相似文献   

4.
Folding, an attribute common to biological macromolecules such as proteins and nucleic acids, enables the formation of complex three-dimensional structure and thus enables the function of these exquisite molecular machines. Chemists are exploring the folding of natural and artificial systems with increasing enthusiasm and boldness of molecular design. The most recent achievements in the area of artificial folding molecules are described in this review.  相似文献   

5.
We have examined the effect of genetically engineered charge modifications on the partitioning behavior of proteins in dextran/polyethylene glycol two-phase systems containing potassium phosphate. By genetically altering a protein's charge, the role of charge on partitioning can be assessed directly without the need to modify the phase system. The charge modifications used are of two types: Charged tails of polyaspartic acid fused to beta-galactosidase and charge-change point mutations of T4 lysozyme which replace positive lysine residues with negative glutamic acids. The partition coefficient K(p) for these proteins was related to measured interfacial potential differences Deltaphi using the simple thermodynamic model, In K(p) = In K(o) + (F/RT)Z(p) deltaphi. The protein net charge Z(p) was determined using the Henderson-Hasselbalch relationship with modifications based on experimentally determined titration and isoelectric point data. It was found that when the electropartitioning term Z(p) deltaphi was varied by changing the pH, the partitioning of T4 lysozyme was quantitatively described by the thermodynamic model. The beta-galactosidase fusions displayed qualitative agreement, and although less than predicted, the partitioning increased more than two orders of magnitude for the pH range examined. Changes in the partitioning of lysozyme due to the various mutations agreed qualitatively with the thermodynamic model, but with a smaller than expected dependence on the estimated charge differences. The beta-galactosidase fusions, on the other hand, did not display a consistent charge based trend, which is likely due either to the enzyme's large size and complexity or to nonelectrostatic contributions from the tails. The lack of quantitative fit with the model described above suggests that the assumptions made in developing this model are oversimplified. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
An analysis of the tendency of hydrophobic groups to tight packing on the surface of β-sheets based on well-known parameters of β-sheets and hydrophobic groups was conducted. This analysis shows the existence of very limited numbers and clearly outlined architecture families of regular parts for the majority of β-structure-containing domains. Each family of architecture strongly depends on the number of β-strands in the pure β-domains and on the existence and number of additional α-helixes and on the mutual arrangements β-strands and α-helixes along the chain in mixed α/β-domains. This paper demonstrates that the tendency of hydrophobic groups to the local tight packing on the surface of β-sheets is probably the main reason for the twist of β-sheets. © 1993 Wiley-Liss, Inc.  相似文献   

7.
We have developed an automatic algorithm STRIDE for protein secondary structure assignment from atomic coordinates based on the combined use of hydrogen bond energy and statistically derived backbone torsional angle information. Parameters of the pattern recognition procedure were optimized using designations provided by the crystallographers as a standard-of-truth. Comparison to the currently most widely used technique DSSP by Kabsch and Sander (Biopolymers 22:2577-2637, 1983) shows that STRIDE and DSSP assign secondary structural states in 58 and 31% of 226 protein chains in our data sample, respectively, in greater agreement with the specific residue-by-residue definitions provided by the discoverers of the structures while in 11% of the chains, the assignments are the same. STRIDE delineates every 11th helix and every 32nd strand more in accord with published assignments. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The pectate lyases, PelC and PelE, have an unusual folding motif, known as a parallel β-helix, in which the polypeptide chain is coiled into a larger helix composed of three parallel β-sheets connected by loops having variable lengths and conformations. Since the regular secondary structure consists almost entirely of parallel β-sheets these proteins provide a unique opportunity to study the effect of parallel β-helical structure on circular dichroism (CD). We report here the CD spectra of PelC and PelE in the presence and absence of Ca2+, derive the parallel β-helical components of the spectra, and compare these results with previous CD studies of parallel β-sheet structure. The shape and intensity of the parallel β-sheet spectrum is distinctive and may be useful in identifying other proteins that contain the parallel β-helical folding motif. © 1995 Wiley-Liss, Inc.  相似文献   

9.
This report continues or examination of the effect of genetically engineered charge modifications on the partitioning behavior of proteins in aqueous two-phase extration. The genetic modifications consisted of the fusion of charged peptide tails to beta-galactosidase and charge-change point mutations to T4 lysozyme. Our previous article examined the influence of these charge modifications on partitioning as a function of interfacial potential difference. In this study, we examined charge directed partitioning behavior in PEG/dextran systems containing small amounts of the charged polymers diethylaminoethyl-dextran (DEAE-dextran) or dextran sulfate. The best results were obtained when attractive forces between the protein and polymer were present. Nearly 100% of the beta-galactosidase, which carries a net negative charge, partitioned to the DEAE-dextran-rich phase regardless of whether the phase was dextran or PEG. In these cases, cloudiness of the protein-rich phases suggest that strong charge interactions resulted in protein/polymer aggregation, which may have contributed to the extreme partitioning. Unlike the potentialdriven partitioning reported previously, consistent partitioning trends were observed as a result of the fusion tails, with observed shifts in partition coefficient (K(p)) of up to 37-fold. However, these changes could not be solely attributed to charge-based interactions. Similarly, T4 lysozyme, carrying a net positive charge, partitioned to the dextran sulfate-containing phase, and displayed four- to sevenfold shifts in K(p) as a result of the point mutations. These shifts were two to four times stronger than those observed for potential driven partitioning. Little effect on partitioning was observed when the protein and polymer had the same charge, with the exception of beta-galactosidase with polyarginine tails. The high positive charge density of these tails provided for a localized interaction with the dextran sulfate, and resulted in 2- to 15-fold shifts in K(p). (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above‐ and below ground. The transformation, which resulted in the constitutive emission of (E)‐β‐caryophyllene and α‐humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)‐β‐caryophyllene‐synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)‐β‐caryophyllene and α‐humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.  相似文献   

11.
The 32 kDa hydrophilic and acidic enamelin, the most stable cleavage fragment of the enamel specific glycoprotein, is believed to play vital roles in controlling crystal nucleation or growth during enamel biomineralization. Circular dichroism and Fourier transform infrared spectra demonstrate that the secondary structure of the 32 kDa enamelin has a high content of α-helix (81.5%). Quantitative analysis on the circular dichroism data revealed that the 32 kDa enamelin undergoes conformational changes with a structural preference to β-sheet with increasing concentration of calcium ions. We suggest that the increase of β-sheet conformation in the presence of Ca2+ may allow preferable interaction of the 32 kDa enamelin with apatite crystal surfaces during enamel biomineralization. The calcium association constant (Ka = 1.55 (±0.13) × 103 M−1) of the 32 kDa enamelin calculated from the fitting curve of ellipticity at 222 nm indicated a relatively low affinity. Our current biophysical studies on the 32 kDa enamelin structure provide novel insights towards understanding the enamelin–mineral interaction and subsequently the functions of enamelin during enamel formation.  相似文献   

12.
Three β-adrenergic receptor subtypes are now known to be functionally expressed in mammals. All three belong to the R7G family of receptors coupled to G-proteins, and characterized by an extracellular glycosylated N-terminal and an intracellular C-terminal region and seven transmembrane domains, linked by three exta- and three intracellular loops. The catecholamine ligand binding domain, studied using affinity-labeling and site-directed mutagenesis, is a pocket lined by residues belonging to the transmembrane domains. The region responsible for the interaction with the Gs protein which, when activated, stimulates adenylyl cyclase, is composed of residues belonging to the parts most proximal to the membrane of intracellular loop i3 and the C-terminal region. The pharmacology of the three subtypes is quite distinct: in fact most of the potent β12 antagonists (the well known β blockers) act as agonists on β3. The subtype is resistant to short-term desensitization mediated by phosphorylation through PKA or βARK, in stark contrast to the β1 or β2 subtypes. Various compounds (dexamethasone, butyrate, insulin) up regulate β1 or β1 subtypes while down-regulating β3 whose expression strictly correlates with differentiation of 3T3-F442A fibroblasts into adipocytes, thus confirming that the expression of the three subtypes may each be regulated independently to exert a specific physiologic role in different tissues or at different stages of development.  相似文献   

13.
14.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

15.
Two separate unrefined models for the secondary structure of two subfamilies of the 6-phospho-β-D -galactosidase superfamily were independently constructed by examining patterns of variation and conservation within homologous protein sequences, assigning surface, interior, parsing, and active site residues to positions in the alignment, and identifying periodicities in these. A consensus model for the secondary structure of the entire superfamily was then built. The prediction tests the limits of an unrefined prediction made using this approach in a large protein with substantial functional and sequence divergence within the family. The protein belongs to the (α–β class), with the core β strands aligned parallel. The supersecondary structural elements that are readily identified in this model is a parallel β sheet built by strands C, D, and E, with helices 2 and 3 connecting strands (C + D) and (D + E), respectively, and an analogous α–β unit (strand G and helix 7) toward the end of the sequence. The resemblance of the supersecondary model to the tertiary structure formed by 8-fold α–β barrel proteins is almost certainly not coincidental. © 1995 Wiley-Liss, Inc.  相似文献   

16.
A major bottleneck in the field of biochemistry is our limited understanding of the processes by which a protein folds into its native conformation. Much of the work on this issue has focused on the conserved core of the folded protein. However, one might imagine that a ubiquitous motif for unaided folding or for the recognition of chaperones may involve regions on the surface of the native structure. We explore this possibility by an analysis of the spatial distribution of regions with amphiphilic α-helical potential on the surface of β-sheet proteins. All proteins, Including β-sheet proteins, contain regions with amphiphilic α-helical potential. That is, any α-helix formed by that region would be amphiphilic, having both hydrophobic and hydrophilic surfaces. In the three-dimensional structure of all β-sheet proteins analyzed, we have found a distinct pattern in the spatial distribution of sequences with amphiphilic α-helical potential. The amphiphilic regions occur in ring shaped clusters approximately 20 to 30 Å in diameter on the surface of the protein. In addition, these regions have a strong preference for positively charged amino acids and a lower preference for residues not favorable to α-helix formation. Although the purpose of these amphiphilic regions which are not associated with naturally occurring α-helix is unknown, they may play a critical role in highly conserved processes such as protein folding. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The thermal unfolding of an all β-sheet protein, cardiotoxin analogue III, from the Taiwan Cobra (Naja naja atra) is studied at pH 2.0, 4.0 and 6.0. At pH 4.0, using circular dichroism and 1-anilino naphthalene-8-sulphonic acid (ANS) fluorescence binding studies, a stable partially structured intermediate is detected at 90°C  相似文献   

18.
A reversed-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry (HPLC–APCI-MS–MS) assay was developed to simultaneously determine monkey urinary free cortisol (C) and 6β-hydroxycortisol (6β-OHC) in 8 min. Urine sample (0.5 ml) containing fludrocortisone acetate (F-C) as the internal standard was extracted with ethyl acetate for 5 min with an extraction efficiency of 90% and 75% for C and 6β-OHC, respectively. A Perkin-Elmer Sciex API 3000 triple quadruple instrument was used for mass spectrometric detection and the column eluent was directed to a heated nebulizer probe. The assay was linear over the range 0.25–10 μM for each analyte. The intra- and inter-day relative standard deviation (RSD) over the entire concentration range for both analytes was less than 10%. Accuracy determined at three concentrations (0.8, 2.0 and 8.0 μM) ranged between 95.5 and 108%. The method described herein is suitable for the rapid and efficient measurement of 6β-OHC/C ratio in Rhesus monkey urine following administration of known hepatic CYP3A inducers and can be used to estimate potential CYP3A induction by drug candidates in the process of early drug development.  相似文献   

19.
The improvement of the biocatalytic reduction of 2-allyl-carboethoxy-cyclopentanone (2) to the corresponding cyclopentanol derivative (+)-(1R,2R)-(1) was accomplished employing baker's yeast in organic media. This chiral cyclopentanol derivative (1), analyzed by high resolution gas chromatography performed over β-cyclodextrin stationary phase, was obtained in 38% yield (>99% e.e.). Chirality 9:321–324, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Two sequence-related subfamilies of flavin-binding β/α-barrels have been identified (the type I and type II proteins) that differ in the nature of residue packing in the core of the barrel domain. Similar observed differences in the packing of internal amino acid side chains in β/α-barrels have previously been used to argue that these domains have evolved convergently toward a stable structural framework. Using structural alignments of flavin-binding barrel proteins, we demonstrate that simple genetic alterations may be responsible for switching the nature of side-chain packing observed in β/α-barrels. The implication is that the 2 structural classes of β/α-barrel cores can arise divergently from an ancestral barrel framework and that convergent evolution to a stable fold need not be invoked to account for the emergence of 2 classes of β/α-barrel core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号