首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alan E. Tonelli 《Biopolymers》1978,17(5):1175-1179
Solution conformations of the cyclic pentapeptide plant-hormone malformin A, whose conformational freedom is constrained by an intramolecular disulfide bridge, are derived and presented here. The nmr and CD data of Ptak are used to place restrictions on the search for possible malformin A solution conformers of low energy. Only two distinct conformers were found to be consistent with Ptak's data. Both structures are characterized by an internally buried (solvent-shielded) D -Cys2 amide proton, a seven-membered (1–3)hydrogen bond between (N–H) and (O?C), and a disulfide bridge conformation with a P chirality as manifested in the nmr study by the temperature independence of the amide proton chemical shifts for the D -Cys2 and D -Leu4 residues and the negative sign of the long wavelength maximum in the CD spectrum, respectively. Inspection of space-filling molecular models of both structures indicates severe steric barriers to their rapid interconversion. Thus, it appears that only one of the two conformers may be present in solution. The difference in their calculated dipole moments (4.6 and 6.9D) suggests an experimental method for distinguishing between the two proposed solution structures.  相似文献   

2.
The 1H, 13C, and 15N resonances of FKBP when bound to the immunosuppressant, ascomycin, were assigned using a computer-aided analysis of heteronuclear double and triple resonance three-dimensional nmr spectra of [U-15N] FKBP/ascomycin and [U-15N, 13C] FKBP/ascomycin. In addition, from a preliminary analysis of two heteronuclear four-dimensional data sets, 3J coupling constants, amide exchange data, and the differences between the Cα and Cβ chemical shifts of FKBP to random coil values, the secondary structure of FKBP when bound to ascomycin was determined. The secondary structure of FKBP when bound to ascomycin in solution closely resembled the x-ray structure of the FKBP/FK506 complex but differed in some aspects from the structure of uncomplexed FKBP in solution. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
We report the determination of two- and three-bond 1H-15N spin–spin couplings in the nmr spectra of a polypeptide. The 1H- and 15N-nmr spectra of 99.2% 15N-enriched alumichrome have been studied at 360 MHz and 10.1 MHz, repectively. While some 2J and 3J coupling are of the order of 5 Hz, most splitting resulting from the heteronuclear interaction are ?2 Hz, which introduces strigent requirements of spectral resolution. In the 1H spectra these requirements were met by digital deconvolution with a sine bell routine combined with positive exponential filtering. Although the 15N spectra clearly exhibit features of fine structure, mainly because of the intrinsic higher nmir sensitivity of protons, observation of 1H-15N spin–spin couplings was found to be more practical in the 1H than in the 15N spectra. We find that the alumichrome data do not satisfy a simple cyclic relationship linking the heteronuclear couplings to the crystallographic ψ dihedral angles. It is suggested that a formal treatment of the ψ-related interresidue 1H-15N coupling might have to take into account a more complex dependence of the intervening 3J on the overall local electronic structure, which is dependent on ?,ψ, and ω simultaneoulsy. In contrast, our analysis indicates that χ1 can be readily determined from the measurement of the corresponding heteronuclear 3J coupling in the 1Hβ or in the amide 15N resonances. Karplus relationships are proposed that relate this heteronuclear 3J to the corresponding dihedral angle θ and which, on average, yield   相似文献   

4.
Tetrapeptides with proline in position 2, asparagine or leucine in position 3, and glycine in positions 1 and 4, with end groups free or blocked on the N-terminal side, were studied in their various ionic states in 2H2O and in Me2SO-d6 by 1H- and 13C-nmr. In order to clarify or refine some details, successive substitutions of the residues in these peptides with amino acids enriched to 85% in 13C, or to 85% 13C plus 97% 2H were carried out. The 1H and 13C chemical shifts as well as the 1H-1H, 13C-13C, and 13C-1H coupling constants and the signal intensities show strong similarity of behavior between the tetrapeptides of asparagine and leucine. The main conformational characteristics are (1) the almost total stabilization of the trans conformer in the type I β-turn structure when the peptide is in the zwitterion state dissolved in Me2SO. This is deduced from the 3J and the 3J coupling constants, which both furnish a dihedral angle of ?3 = ?90°, and from the positive value of the temperature coefficient of the glycine-4 amide protons, which suggests a type 4 → 1 hydrogen bond; (2) the evolution of cis and trans isomer fractions which change with the ionic state of the peptides in Me2SO, whereas they remain constant in aqueous solution; and (3) the conformation of the pyrrolidine ring as it follows the variations in cis:trans isomer populations together with the side-chain rotamer fractions of the residue in position 3. In the β-turn conformation the isomer cis is less abundant and the pyrrolidine ring is more flexible; this explains the perfect accommodation of the proline residue in position 2 of a bend. The interdependence of these phenomena where interactive forces play a predominant role underlines the importance of cooperative effects in the molecule. The results also suggest that the cis isomer of proline can adapt itself just as well as the trans isomer to position 2 of a type I β-turn.  相似文献   

5.
The molecular theory of the previous paper in this series is extended to determine the effect of divalent metal ions on helix stability relative to coil at fixed ionic strength and nucleotide phosphate concentration. Specification of the state of condensed counterions, as well as their concentration, is essential for the solution of this problem, and it is assumed that they translate freely within a thin cylindrical shell close to the polynucleotide. As a function of divalent counterion concentration m the relative stability of the helix is highly nonlinear. Although the overall trend is that the helix stability increases with addition of divalent metal ion, there is a narrow concentration range for which it decreases slightly. The behavior of the relative stability as a function of m is determined by the translational degrees of freedom of the counterions, both univalent and divalent, both condensed and uncondensed. Detailed comparison of the theory with data is not given here, but it is pointed out that the calculated values of the relative stability are consistent with the order of magnitude of the observed effect Mg2+ on the melting temperature.  相似文献   

6.
The 1H-nmr studies were extensively carried out to elucidate preferred conformations of dipeptides CH3C*O—X—NHCH3, with X = Abu, nVal, and Val in various solvents. The vicinal 1H—1H coupling constants for the NH—CαH moiety and those around the Cα—Cβ bond in the articulated side chain provided the information regarding the average conformation of these molecules. The results indicate that transformation of skeletal conformations takes place in solution among conformers having similar dihedral angles, θ, in the Karplus expression.  相似文献   

7.
The 1H-nmr spectra of co-oligopeptides of tryptophan and glycine with structure H-Gly-Trp-(Gly)n-Trp-Gly-OH (n = 0–2) and those of several di- and tripeptides have been recorded at 360 MHz with CD3OD solutions containing 0.1N NaOD. The assignment of resonance signals was generally possible by comparing the spectra of structurally related peptides with each other. In order to solve the remaining ambiguities in the assignment, H-(αL,βS)(α,β-d2)Trp-OH, H-Trp-(αL,βS)(α,β-d2)Trp-OH, and H-Trp-(δ12232-d5)Trp-OH have been prepared and their spectra compared with those of the undeuterated compounds. The distribution of rotamers around the χ1 and (in two cases) χ2 torsion angles of the side chains has been obtained from the vicinal coupling constants 3J and from the long-range coupling constants 4J. These data and an analysis of the chemical shifts of the Gly-Cα protons suggest that the orientation of the aromatic side chain is influenced by the following order of decreasing interaction with the functional groups at N- and C-side: -NH2 > –NHCO– > –CONH–> –COO?. This rule does not hold for the second Trp residue of di- and tripeptides containing the -Trp-Trp- sequence, which has tentatively been attributed to steric effects.  相似文献   

8.
Conformation and folding in histones H1 and H5   总被引:1,自引:0,他引:1  
Denatured histones H1 and H5 can be readily refolded on salt addition. Their digestion by trypsin leads to limit peptides of about 80 residues having the same nmr and CD spectra as those of the intact parent histones. Scanning microcalorimetry shows that (1) the folded structures of H1 and H5 are located entirely in their limit peptides; (2) both have values of the specific denaturation enthalpy typical for small globular proteins; and that (3) both exhibit a classic “2-state” transition (ΔH = ΔH). The heat-denaturation profiles of H5 measured using intrinsic and extrinsic Cotton effect and side-chain nmr peaks do not coincide at all. Only the intrinsic Cotton effects give a Tm and ΔH close to that from microcalorimetry. We conclude that these proteins exhibit large-scale side-chain motions that precede the macroscopic cooperative transition.  相似文献   

9.
H Grassi  D Vasilescu 《Biopolymers》1971,10(9):1543-1557
A dielectric method is presented to measure the ejection of counterion during the thermal fusion of Na DNA solutions. The dielectric conductivity behavior at fixed frequency versus temperature is a measure of the molar concentration of counterfoils formed from the macromolecules. A linear dependence between Na+ cations released and DNA concentration was verified. We consider the variation of sodium activity coefficient Δ during thermal transconformation to be in good agreement with other experimental data.  相似文献   

10.
The influence of proline cis-trans isomerization on the kinetics of lysozyme unfolding was examined carefully according to the theory of Hagerman and Baldwin [(1976) Biochemistry 15, 1462–1473]. As a result, the kinetics of lysozyme unfolding was found to follow the two-state transition model well. The temperature dependencies of kuf and kf over a wide temperature range showed that ΔC = 0 and ΔC = ?6.7 kJ K?1 mol?1 in solutions of different concentrations of GuHCl. The data observed in solutions containing other denaturants also supported the conclusion that ΔC is nearly equal to zero. The activation enthalpies of unfolding (ΔH) were observed at various concentrations of several kinds of denaturants. They were independent of species and concentrations of denaturants ΔH = 200 kJ mol?1). These facts indicate that the aspect of interaction between protein and different kinds of solvent molecules varies only slightly during the unfolding to the transition state, that is, the transition state is at compact as the native one. Therefore, it is also suggested that ΔH of 200 kJ mol?1 is primarily required for the disruption of long-range interactions among different structural domains through a subtle conformational change. We compared the effects of several kinds of denaturants on the unfolding rate. The addition of PrOH more remarkably increases the unfolding rate than do other hydrophilic denaturants. This is probably because PrOH molecules can penetrate into the hydrophobic core of lysozyme, but hydrophilic reagents cannot because of the compactness of the transition state.  相似文献   

11.
A mean-square helical hydrophobic moment, 〈h2〉, is defined for polypeptides in analogy to the mean-square dipole moment, 〈μ2〉, for polymer chains. For a freely jointed polymer chain, 〈μ2〉 is given by Σm, where mi denotes the dipole moment associated with bond i. In the absence of any correlations in the hydrophobic moments of individual amino acid residues in the helix, 〈h2〉 is specified by ΣH, where Hi denotes the hydrophobicity of residue i. The tendency for correlations in orientations of residue hydrophobic moments in helices therefore dictates the size of 〈h2〉/〈H2〉, where 〈H2〉 denotes the average value of ΣH for all helices. The value of 〈h2〉/〈H2〉 will be greater than one in amphiphilic helices. A necessary prerequisite for this diagnostic usage of 〈h2〉/〈H2〉 is that the residue hydrophobic moment be oriented prependicular to the principal axis of the helix. Matrix-generation schemes are formulated that permit rapid evaluation of 〈h2〉 and 〈H2〉. The behavior of 〈h2〉/〈H2〉 is illustrated by calculations performed for model sequential copolypeptides.  相似文献   

12.
Empirical force-field calculations and ir and 1H-nmr spectra indicate that five-membered (C5) and seven-membered (C) hydrogen-bonded rings are the preferred conformations of acetyl-L -Phe p-acetyl and p-valeryl anilides in nonpolar media. The C5/C ratio was found to be dependent on the dryness of the solute and the solvent. This fact and the results from conformational-energy calculations suggest that a molecule of water participates in the stabilization of the C conformation.  相似文献   

13.
Assume k independent populations are given which are distributed according to R, …,Ri ∈ Θ ⊆ R ). Taking samples of size n the population with the smallest ϑ-value is to be selected. Using the framework of Le Cam's decision theory (Le Cam , 1986; Strasser , 1985) under mild regularity assumptions, an asymptotically optimal selection procedure is derived for the sequence of localized models. In the proportional hazards model with conditionally independent censoring, an asymptotically optimal adaptive selection procedure is constructed by substituting the unknown nuisance parameter by a kernel estimator.  相似文献   

14.
The methods suggested earlier for the analysis and representation of protein structural data are now extended to the helical regions in finer details. These enable better handling of characterization of bends and distortions, for which statistical parameters are also developed. Using latest myoglobin data, best experimental parameters for the α-helix are deduced to be rN = 1.55 (0.13) Å, r = 2.28 (0.12) Å, rC′ = 1.70 (0.10) Å, r0 = 2.02 (0.12) Å, ? = 100.5 (2.3)°, and t = 1.495 (0.055) Å.  相似文献   

15.
16.
Yen-Yau H. Chao  R. Bersohn 《Biopolymers》1978,17(12):2761-2767
In aqueous solutions, 13C- and 1H-nmr studies show that the percentage of trans conformation of proline oligomers +H2H Pro-(Pro)n-CO increases substantially from n = 1 (65% trans) to n = 2 (90% trans). The relatively low percentage of trans structure for the dimer (n = 1) very likely is caused by the extra stability acquired by the end-to-end intramolecular H-bonding of the cis dimer. As n increase from 2 to 3 (or 5) in +H2N-Pro-(Pro)n-CO, the percentage of trans conformation stays more or less constant (~0.9). A high salt concentration (4M CaCl2) causes a conformation randomization, so that the short-chain oligomer (n = 1, 3, 5) and the long-chain poly (L -proline) all show about the same frantion of trans conformation (0.7-0.8).  相似文献   

17.
Four fundamental Raman lines were observed at 159, 111, 55 and 27 cm-1 corresponding to the I bound (I) in amyloses with DP from 20 to 100, regardless of the degree of polymerization of I and the excitation wavelength. The spectral resolution was based on the molar extinction coefficient and molar ellipticity spectra of I. Eight bands, named, S1, S2, ?, S8 from long to short wavelength, were isolated. These were found regardless of the DP. By a resonance excitation Raman study, the characteristics of S3 and S4, comprising the shoulder around 480 nm, were found to be different from those of S1 and S2, comprising the blue band. The assignment of the spectra was based on the electronic states of the monomeric I in the exciton-coupled dimeric unit. It was concluded that the blue band (S1,S2) belonged to the long-axis transitions and the shoulder band (S3,S4) to the short-axis ones on the monmeric coordinate system.  相似文献   

18.
Phorbol ester treatment of granulocytes triggers release of superoxide (O) and a concomitant burst of DNA strand breaks. The relationship between the amount of O and the number of DNA breaks has not previously been explored. To quantify the relatively large amount of O generated over a 40-min period by 1 × 106 granulocytes/mL, a discontinuous “10-min pulse” method employing cytochrome c was used; 140 nmol O per 1 × 106 cells was detected. DNA strand breaks were quantified by fluorimetric analysis of DNA unwinding (FADU). To vary the level of O released by cells, inhibitors of the respiratory burst were used. Sodium fluoride (1–10 mM) and staurosporine (2–10 nM) both inhibited O production. In both cases, however, inhibition of strand breakage was considerably more pronounced than inhibition of O. Zinc chloride (50–200 μM) inhibited both O and DNA breaks, approximately equally. Dinophysistoxin-1 (okadaic acid) inhibited O production more effectively than it inhibited DNA breaks. O dismutes to H2O2, a reactive oxygen species known to cause DNA breaks. The addition of catalase to remove extracellular H2O2 had no effect on DNA breakage. Using pulse field gel electrophoresis, few double-stranded breaks were detected compared to the number detected by FADU, indicating that about 95% of breaks were single-stranded. The level of DNA breaks is not directly related to the amount of extracellular O or H2O2 in PMA-stimulated granulocytes. We conclude that either an intracellular pool of these reactive oxygen species is involved in breakage or that the metabolic inhibitors are affecting a novel strand break pathway. J. Cell. Biochem. 66:219–228, 1997. © 1997 Wiley-Liss Inc.  相似文献   

19.
Wei Liu  Takashi Norisuye 《Biopolymers》1988,27(10):1641-1654
Weight-average molecular weights Mw, second virial coefficients, and z-average radii of gyration 〈S2〉 were determined by light scattering as a function of temperature T for four sodium salt samples of xanthan in 0.01M aqueous NaCl, in which the polysaccharide undergoes an order–disorder conformation change with increasing T. The data for 〈S2〉 and Mw at 25 and 80°C, the lowest and highest temperatures studied, confirmed the previous conclusion that the predominant conformation at the former T, i.e., in the ordered state, is a double helix, while that at the latter T, i.e., in the disordered state, is a dimerized coil expanded by electrostatic repulsions between charged groups of the polymer. As T was increased from 25 to 80°C, 〈S2〉 sigmoidally decreased or increased depending on the dimer's molecular weight. This temperature dependence of 〈S2〉 and that determined elsewhere for a high molecular weight sample were found to be described almost quantitatively by a simple dimer model in which the double helix melts from both ends, when the double-helical fraction in the dimer at a given T estimated previously from optical rotation data was used.  相似文献   

20.
Equilibrium unfolding (folding) studies reveal that the autoregulatory RNA pseudoknots derived from the bacteriophage T2 and T4 gene 32 mRNAs exhibit significant stabilization by increasing concentrations of divalent metal ions in solution. In this report, the apparent affinities of exchange inert trivalent Co(NH3) have been determined, relative to divalent Mg2+, for the folded, partially folded (Kf), and fully unfolded (Ku) conformations of these molecules. A general nonspecific, delocalized ion binding model was developed and applied to the analysis of the metal ion concentration dependence of individual two‐state unfolding transitions. Trivalent Co(NH3) was found to associate with the fully folded and partially unfolded pseudoknotted forms of these RNAs with a Kf of 5–8 × 104 M−1 in a background of 0.10 M K+, or 3‐ to 5‐fold larger than the Kf obtained for two model RNA hairpins and hairpin unfolding intermediates, and ≈ 40–50‐fold larger than Kf for Mg2+. The magnitude of Kf was found to be strongly dependent on the monovalent salt concentration in a manner qualitatively consistent with polyelectrolyte theory, with Kf reaching 1.2 × 105 M−1 in 50 mM K+. Two RNA hairpins were found to have affinities for Co(NH3) and Ru(NH3) of 1–2 ×104 M−1, or ≈ 15‐fold larger than the Kf of ∼ 1000 M−1 observed for Mg2+. Additionally, the Ku of 4,800 M−1 for the trivalent ligands is ≈ 8‐fold larger than the Ku of 600 M−1 observed for Mg2+. These findings suggest that the T2 and T4 gene 32 mRNA pseudoknots possess a site(s) for Mg2+ and Co(NH3) binding of significantly higher affinity than a “duplexlike” delocalized ion binding site that is strongly linked to the thermodynamic stability of these molecules. Imino proton perturbation nmr spectroscopy suggests that this site(s) lies near the base of the pseudoknot stem S2, near a patch of high negative electrostatic potential associated with the region where the single loop L1 adenosine crosses the major groove of stem S2. © 1999 John Wiley & Sons, Inc. Biopoly 50: 443–458, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号