首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ashish Shelar  Manju Bansal 《Proteins》2014,82(12):3420-3436
α‐helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α‐helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C‐termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α‐helices in a high‐resolution dataset of integral α‐helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C‐termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near‐helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420–3436. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
3.
We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position.  相似文献   

4.
Proline-induced constraints in alpha-helices   总被引:9,自引:0,他引:9  
L Piela  G Némethy  H A Scheraga 《Biopolymers》1987,26(9):1587-1600
The disrupting effect of a prolyl residue on an α-helix has been analyzed by means of conformational energy computations. In the preferred, nearly α-helical conformations of Ac-Ala4-Pro-NHMe and of Ac-Ala7-Pro-Ala7-NHMe, only the residue preceding Pro is not α-helical, while all other residues can occur in the α-helical A conformation; i.e., it is sufficient to introduce a conformational change of only one residue in order to accommodate proline in a distorted α-helix. Other low-energy conformations exist in which the conformational state of three residues preceding proline is altered considerably; on the other hand, another conformation in which these three residues retain the near-α-helical A-conformational state (with up to 26° changes of their dihedral angles ? and ψ, and a 48° change in one ω from those of the ideal α-helix) has a considerably higher energy. These conclusions are not altered by the substitution of other residues in the place of the Ala preceding Pro. The conformations of the peptide chain next to prolyl residues in or near an α-helix have been analyzed in 58 proteins of known structure, based on published atomic coordinates. Of 331 α-helices, 61 have a Pro at or next to their N-terminus, 21 have a Pro next to their C-terminus, and 30 contain a Pro inside the helix. Of the latter, 16 correspond to a break in the helix, 9 are located inside distorted first turns of the helix, and 5 are parts of irregular helices. Thus, the reported occurrence of prolyl residues next to or inside observed α-helices in proteins is consistent with the computed steric and energetic requirements of prolyl peptides.  相似文献   

5.
Surveys of protein crystal structures have revealed that amino acids show unique structural preferences for the N1, N2, and N3 positions in the first turn of the alpha-helix. We have therefore extended helix-coil theory to include statistical weights for these locations. The helix content of a peptide in this model is a function of N-cap, C-cap, N1, N2, N3, C1, and helix interior (N4 to C2) preferences. The partition function for the system is calculated using a matrix incorporating the weights of the fourth residue in a hexamer of amino acids and is implemented using a FORTRAN program. We have applied the model to calculate the N1 preferences of Gln, Val, Ile, Ala, Met, Pro, Leu, Thr, Gly, Ser, and Asn, using our previous data on helix contents of peptides Ac-XAKAAAAKAAGY-CONH2. We find that Ala has the highest preference for the N1 position. Asn is the most unfavorable, destabilizing a helix at N1 by at least 1.4 kcal mol(-1) compared to Ala. The remaining amino acids all have similar preferences, 0.5 kcal mol(-1) less than Ala. Gln, Asn, and Ser, therefore, do not stabilize the helix when at N1.  相似文献   

6.
The 3(10)-helix is characterized by having at least two consecutive hydrogen bonds between the main-chain carbonyl oxygen of residue i and the main-chain amide hydrogen of residue i + 3. The helical parameters--pitch, residues per turn, radius, and root mean square deviation (rmsd) from the best-fit helix--were determined by using the HELFIT program. All 3(10)-helices were classified as regular or irregular based on rmsd/(N - 1)1/2 where N is the helix length. For both there are systematic, position-specific shifts in the backbone dihedral angles. The average phi, psi shift systematically from approximately -58 degrees, approximately -32 degrees to approximately -90 degrees, approximately -4 degrees for helices 5, 6, and 7 residues long. The same general pattern is seen for helices, N = 8 and 9; however, in N = 9, the trend is repeated with residues 6, 7, and 8 approximately repeating the phi, psi of residues 2, 3, and 4. The residues per turn and radius of regular 3(10)-helices decrease with increasing length of helix, while the helix pitch and rise per residue increase. That is, regular 3(10)-helices become thinner and longer as N increases from 5 to 8. The fraction of regular 3(10)-helices decreases linearly with helix length. All longer helices, N > or = 9 are irregular. Energy minimizations show that regular helices become less stable with increasing helix length. These findings indicate that the definition of 3(10)-helices in terms of average, uniform dihedral angles is not appropriate and that it is inherently unstable for a polypeptide to form an extended, regular 3(10)-helix. The 3(10)-helices observed in proteins are better referred to parahelices.  相似文献   

7.
To understand the role of aromatic-aromatic interactions in imparting specificity to the folding process, the geometries of four aromatic residues with different sequence spacing, located in alpha-helices or five residues from helical ends, interacting with each other have been elucidated. The geometry is found to depend on the sequence difference. Specific interactions (C-H...pi and N-H...pi) which result from this geometry may cause a given pair of residues (such as Phe-His) with a particular sequence difference to occur more than expected. The most conspicuous residue in an aromatic pair in the context of helix stability is His, which is found at the last (C1) position or the two positions (Ncap and Ccap) immediately flanking the helix. An alpha-helix and a contiguous 3(10)-helix or two helices separated by a non-helical residue can have interacting aromatic pairs, the geometry of interaction and the relative orientation between the helices being rather fixed. Short helices can also have interacting residues from either side.  相似文献   

8.
We investigated the possible role of residues at the Ccap position in an alpha-helix on protein stability. A set of 431 protein alpha-helices containing a C'-Gly from the Protein Data Bank (PDB) was analyzed, and the normalized frequencies for finding particular residues at the Ccap position, the average fraction of buried surface area, and the hydrogen bonding patterns of the Ccap residue side-chain were calculated. We found that on average the Ccap position is 70% buried and noted a significant correlation (R=0.8) between the relative burial of this residue and its hydrophobicity as defined by the Gibbs energy of transfer from octanol or cyclohexane to water. Ccap residues with polar side-chains are commonly involved in hydrogen bonding. The hydrogen bonding pattern is such that, the longer side-chains of Glu, Gln, Arg, Lys, His form hydrogen bonds with residues distal (>+/-4) in sequence, while the shorter side-chains of Asp, Asn, Ser, Thr exhibit hydrogen bonds with residues close in sequence (<+/-4), mainly involving backbone atoms. Experimentally we determined the thermodynamic propensities of residues at the Ccap position using the protein ubiquitin as a model system. We observed a large variation in the stability of the ubiquitin variants depending on the nature of the Ccap residue. Furthermore, the measured changes in stability of the ubiquitin variants correlate with the hydrophobicity of the Ccap residue. The experimental results, together with the statistical analysis of protein structures from the PDB, indicate that the key hydrophobic capping interactions between a helical residue (C3 or C4) and a residue outside the helix (C", C3' or C4') are frequently enhanced by the hydrophobic interactions with Ccap residues.  相似文献   

9.
13C-, 1H-nmr, CD, and x-ray crystallography revealed β-turns of type III for Boc-Gly-L-Ala-Aib-OMe, Boc-L-Ala-Aib-L-Ala-OMe; the 310-helix for Boc-Aib-L-Ala-Aib-L-Ala-Aib-OMe; and antiparallel arranged α-helices for Boc-L-Ala-Aib-Ala-Aib-Ala-Glu(OBzl)-Ala-Aib-Ala-Aib-Ala-OMe. An N-terminal rigid α-helical segment is found in the polypeptide antibiotics alamethicin, suzukacillin, and trichotoxin. The α-helix dipole is essential for their voltage-dependent pore formation in lipid bilayer membranes, which is explained by a flip-flop gating mechanism based on dipole–dipole interactions of parallel and antiparallel arranged α-helices within oligomeric structures.  相似文献   

10.
N3 is the third position from the N terminus in the alpha-helix with helical backbone dihedral angles. All 20 amino acids have been placed in the N3 position of a synthetic helical peptide (CH(3)CO-[AAX AAAAKAAAAKAGY]-NH(2)) and the helix content measured by circular dichroism spectroscopy at 273 K. The dependence of peptide helicity on N3 residue identity has been used to determine a free energy scale by analysis with a modified Lifson-Roig helix coil theory that includes a parameter for the N3 energy (n3). The most stabilizing residues at N3 in rank order are Ala, Glu, Met/Ile, Leu, Lys, Ser, Gln, Thr, Tyr, Phe, Asp, His, and Trp. Free energies for the most destabilizing residues (Cys, Gly, Asn, Arg, and Pro) could not be fitted. The results correlate with N1, N2, and helix interior energies and not at all with N-cap preferences. This completes our work on studying the structural and energetic preferences of the amino acids for the N-terminal positions of the alpha-helix. These results can be used to rationally modify protein stability, help design helices, and improve prediction of helix location and stability.  相似文献   

11.
In this study, 1064 nonhomologous “unsplit”, “one-strand split” and “two-strand split” right-handed βαβ-units having standard α-helices and loops up to seven residues in length have been analyzed. It was found that the α-helices in these kinds of βαβ-units have different distributions of the hydrophobic and hydrophilic amino acid residues along the chain. In the unsplit βαβ-units, most α-helices have hydrophobic residues in positions N4-N7-N8-N11 or N6-N7-N10, where N1 is the first N-terminal residue. In the one-strand split βαβ-units, most α-helices have hydrophobic residues in positions N4-N7-N8-N11 and those in two-strand split βαβ-units in positions N4-N5-N8-N12. On the other hand, in all kinds of βαβ-units, there are commonly occurring hydrophobic stripes of type C4-C7-C8 at the C-terminal parts of the α-helices. As a rule, the C- and N-terminal hydrophobic stripes overlap and the extent of their overlapping determine the length of α-helices.  相似文献   

12.
Some properties of α-helices of polyclycine and polyalanine, up to the decapeptide, were investigated by ab initio molecular-orbital calculations. These helices were found to be unstable relative to the corresponding “fully extended chain” conformation. The electric field of helices of 8–10 residues is about 20% stronger than that of models built from noninteracting monomers, for example. This is a result of cooperativity, which is essentially governed by the intramolecular hydrogen bonds. The cooperativity is manifest in all properties of the helices: relative stability, dipole moment, proton affinity, electrical potential. The electric potential of helices of three and four residues is such that their instability can be compensated for by a single charged group acting as an “initiator.” The computed proton affinity of the (Ala)8 α-helix is about 45 kcal/mol larger than that of formamide, which confirms that long helices may be protonated at the carboxyl end in solution.  相似文献   

13.
Study of the most conserved region in many β/α-barrels, the phosphate-binding site, revealed a sequence motif in a few β/α-barrels with known tertiary structure, namely glycolate oxidase (GOX), cytochrome b2 (Cyb2), tryptophan synthase α subunit (TrpA), and the indoleglycerolphosphate synthase (TrpC). Database searches identified this motif in numerous other enzyme families: (1) IMP dehydrogenase (IMPDH) and GMP reductase (GuaC); (2) phosphoribosylformimino-5-aminoimidazol carboxamide ribotide isomerase (HisA) and the cyclase-producing D-erythro-imidazole-glycerolphosphate (HisF) of the histidine biosynthetic pathway; (3) dihydroorotate dehydrogenase (PyrD); (4) glutamate synthase (GltB); (5) ThiE and ThiG involved in the biosynthesis of thiamine as well as related proteins; (6) an uncharacterized open reading frame from Erwinia herbicola; and (7) a glycerol uptake operon antiterminator regulatory protein (GlpP). Secondary structure predictions of the different families mentioned above revealed an alternating order of β-strands and α-helices in agreement with a β/α-barrel-like topology. The putative phosphate-binding site is always found near the C-terminus of the enzymes, which are all at least about 200 amino acids long. This is compatible with its assumed location between strand 7 and helix 8. The identification of a significant motif in functionally diverse enzymes suggests a divergent evolution of at least a considerable fraction of β/α-barrels. In addition to the known accumulation of β/α-barrels in the tryptophan biosynthetic pathway, we observe clusters of these enzymes in histidine biosynthesis, purine metabolism, and apparently also in thiamine biosynthesis. The substrates are mostly heterocyclic compounds. Although the marginal sequence similarities do not allow a reconstruction of the barrel spreading, they support the idea of pathway evolution by gene duplication.  相似文献   

14.
Examination of crystal structures of restriction endonucleases EcoRI and EcoRV complexes with their cognate DNA revealed a common structural element, which forms the core of both proteins. This element consists of a five-stranded β-sheet and two α-helices packed against it and could be described as α–β sandwich in which helices and β-strands lie in two stacked layers. While the spatial structure of this α–β sandwich is conserved in both enzymes, there are no detectable similarities between amino acid sequences except of a few residues involved in active site formation. Probably, other restriction endonucleases which have similar organization of the active site might possess similar structural element regardless of DNA sequence recognized and recognition elements in the enzyme used. © 1994 Wiley-Liss, Inc.  相似文献   

15.
The aim of the present investigation is to determine the effect of α-helical propensity and sidechain hydrophobicity on the stability of amphipathic α-helices. Accordingly, a series of 18-residue amphipathic α-helical peptides has been synthesized as a model system where all 20 amino acid residues were substituted on the hydrophobic face of the amphipathic α-helix. In these experiments, all three parameters (sidechain hydrophobicity, α-helical propensity and helix stability) were measured on the same set of peptide analogues. For these peptide analogues that differ by only one amino acid residue, there was a 0.96 kcal/mole difference in α-helical propensity between the most (Ala) and the least (Gly) α-helical analogue, a 12.1-minute difference between the most (Phe) and the least (Asp) retentive analogue on the reversed-phase column, and a 32.3°C difference in melting temperatures between the most (Leu) and the least (Asp) stable analogue. The results show that the hydrophobicity and α-helical propensity of an amino acid sidechain are not correlated with each other, but each contributes to the stability of the amphipathic α-helix. More importantly, the combined effects of α-helical propensity and sidechain hydrophobicity at a ratio of about 2:1 had optimal correlation with α-helix stability. These results suggest that both α-helical propensity and sidechain hydrophobicity should be taken into consideration in the design of α-helical proteins with the desired stability.  相似文献   

16.
Conformational free energy calculations have been carried out for proline-containing alanine-based pentadecapeptides with the sequence Ac-(Ala)n-Pro-(Ala)m-NHMe, where n + m = 14, to figure out the positional preference of proline in alpha-helices. The relative free energy of each peptide was calculated by subtracting the free energy of the extended conformation from that of the alpha-helical one, which is used here as a measure of preference. The highest propensity is found for the peptide with proline at the N-terminus (i.e., Ncap + 1 position), and the next propensities are found at Ncap, N' (Ncap - 1), and C' (Ccap + 1) positions. These computed results are reasonably consistent with the positional propensities estimated from X-ray structures of proteins. The breaking in hydrogen bonds around proline is found to play a role in destabilizing alpha-helical conformations, which, however, provides the favored hydration of the corresponding N-H and C=O groups. The highest preference of proline at the beginning of alpha-helix appears to be due to the favored electrostatic and nonbonded energies between two residues preceding proline and the intrinsic stability of alpha-helical conformation of the proline residue itself as well as no disturbance in hydrogen bonds of alpha-helix by proline. The average free energy change for the substitution of Ala by Pro in a alpha-helix is computed to be 4.6 kcal/mol, which is in good agreement with the experimental value of approximately 4 kcal/mol estimated for an oligopeptide dimer and proteins of barnase and T4 lysozyme.  相似文献   

17.
N2 is the second position in the alpha-helix. All 20 amino acids were placed in the N2 position of a synthetic helical peptide (CH(3)CO-[AXAAAAKAAAAKAAGY]-NH(2)) and the helix content was measured by circular dichroism spectroscopy at 273K. The dependence of peptide helicity on N2 residue identity has been used to determine a free-energy scale by analysis with a modified Lifson-Roig helix-coil theory that includes a parameter for the N2 energy (n2). The rank order of DeltaDeltaG((relative to Ala)) is Glu(-), Asp(-) > Ala > Glu(0), Leu, Val, Gln, Thr, Ile, Ser, Met, Asp(0), His(0), Arg, Cys, Lys, Phe > Asn, > Gly, His(+), Pro, Tyr. The results correlate very well with N2 propensities in proteins, moderately well with N1 and helix interior preferences, and not at all with N-cap preferences. The strongest energetic effects result from interactions with the helix dipole, which favors negative charges at the helix N terminus. Hydrogen bonds to side chains at N2, such as Gln, Ser, and Thr, are weak, despite occurring frequently in protein crystal structures, in contrast to the N-cap position. This is because N-cap hydrogen bonds are close to linear, whereas N2 hydrogen bonds have poor geometry. These results can be used to modify protein stability rationally, help design helices, and improve prediction of helix location and stability.  相似文献   

18.
The kinetics of α-helix formation in polyalanine and polyglycine eicosamers (20-mers) were examined using torsional-coordinate molecular dynamics (MD). Of one hundred fifty-five MD experiments on extended (Ala)20 carried out for 0.5 ns each, 129 (83%) formed a persistent α-helix. In contrast, the extended state of (Gly)20 only formed a right-handed α-helix in two of the 20 MD experiments (10%), and these helices were not as long or as persistent as those of polyalanine. These simulations show helix formation to be a competition between the rates of (a) forming local hydrogen bonds (i.e. hydrogen bonds between any residue i and its i + 2, i + 3, i + 4, or i + 5th neighbor) and (b) forming nonlocal hydrogen bonds (HBs) between residues widely separated in sequence. Local HBs grow rapidly into an α-helix; but nonlocal HBs usually retard helix formation by “trapping” the polymer in irregular, “balled-up” structures. Most trajectories formed some nonlocal HBs, sometimes as many as eight. But, for (Ala)20, most of these eventually rearranged to form local HBs that lead to α-helices. A simple kinetic model describes the rate of converting nonlocal HBs into α-helices. Torsional-coordinate MD speeds folding by eliminating bond and angle degrees of freedom and reducing dynamical friction. Thus, the observed 210 ps half-life for helix formation is likely to be a lower bound on the real rate. However, we believe the sequential steps observed here mirror those of real systems. Proteins 33:343–357, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Proline residues in transmembrane helices have been found to have important roles in the functioning of membrane proteins. Moreover, Pro residues occur with high frequency in transmembrane α-helices, as compared to α-helices for soluble proteins. Here, we report several properties of the bacteriorhodopsin mutants P50A (helix B), P91A (helix C) and P186A (helix F). Compared to wild type, strongly perturbed behaviour has been found for these mutants. In the resting state, increased hydroxylamine accessibility and altered Asp-85 pKa and light-dark adaptation were observed. On light activation, hydroxylamine accessibility was increased and proton transport activity, M formation kinetics and FTIR difference spectra of M and N intermediates showed clear distortions. On the basis of these alterations and the near identity of the crystalline structures of mutants with that of wild type, we conclude that the transmembrane proline residues of bacteriorhodopsin fulfil a dynamic role in both the resting and the light-activated states. Our results are consistent with the notion that mutation of Pro to Ala allows the helix to increase its flexibility towards the direction originally hindered by the steric clash between the ring Cγ and the carbonyl O of the i-4 residue, at the same time decreasing the mobility towards the opposite direction. Due to their properties, transmembrane Pro residues may serve as transmission elements of conformational changes during the transport process. We propose that these concepts can be extended to other transmembrane proteins.  相似文献   

20.
A thermodynamic model describing formation of α-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining α-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The α-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each α-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set I] and [set 2]) and for 30 mostly α-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix—coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix—coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area. © 1997 John Wiley & Sons, Inc. Biopoly 42: 239–269, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号